Research
Trading Volume: Implications of an Intertemporal Capital Asset Pricing Model
Lo, Andrew W., and Jiang Wang (2006), Trading Volume: Implications of an Intertemporal Capital Asset Pricing Model, Journal of Finance 61 (6), 2805–2840.
View abstract
Hide abstract
We derive an intertemporal capital asset pricing model with multiple assets and heterogeneous investors, and explore its implications for the behavior of trading volume and asset returns. Assets contain two types of risks: market risk and the risk of changing market conditions. We show that investors trade only in two portfolios: the market portfolio, and a hedging portfolio, which allows them to hedge the dynamic risk. This implies that trading volume of individual assets exhibit a two-factor structure, and their factor loadings depend on their weights in the hedging portfolio. This allows us to empirically identify the hedging portfolio using volume data. We then test the two properties of the hedging portfolio: its return provides the best predictor of future market returns and its return together with the return of the market portfolio are the two risk factors determining the cross-section of asset returns.
Lo, Andrew W. (2005), Reconciling Efficient Markets with Behavioral Finance: The Adaptive Markets Hypothesis, Journal of Investment Consulting 7 (2), 21–44.
View abstract
Hide abstract
The battle between proponents of the Efficient Markets Hypothesis and champions of behavioral finance has never been more pitched, and there is little consensus as to which side is winning or what the implications are for investment management and consulting. In this article, I review the case for and against the Efficient Markets Hypothesis, and describe a new framework—the Adaptive Markets Hypothesis—in which the traditional models of modern financial economics can co-exist alongside behavioral models in an intellectually consistent manner. Based on evolutionary principles, the Adaptive Markets Hypothesis implies that the degree of market efficiency is related to environmental factors characterizing market ecology such as the number of competitors in the market, the magnitude of profit opportunities available, and the adaptability of the market participants. Many of the examples that behavioralists cite as violations of rationality that are inconsistent with market efficiency—loss aversion, overconfidence, overreaction, mental accounting, and other behavioral biases—are, in fact, consistent with an evolutionary model of individuals adapting to a changing environment via simple heuristics. Despite the qualitative nature of this new paradigm, I show that the Adaptive Markets Hypothesis yields a number of surprisingly concrete applications for both investment managers and consultants.
Lo, Andrew W., Dmitry V. Repin, Brett N. Steenbarger, David Laibson, David Hirshleifer, and Kevin McCabe (2005), Fear and Greed in Financial Markets: A Clinical Study of Day-Traders, American Economic Review 95 (2), 352–359.
View abstract
Hide abstract
We investigate several possible links between psychological factors and trading performance in a sample of 80 anonymous day-traders. Using daily emotional-state surveys over a five-week period as well as personality inventory surveys, we construct measures of personality traits and emotional states for each subject and correlate these measures with daily normalized profits-and-losses records. We find that subjects whose emotional reaction to monetary gains and losses was more intense on both the positive and negative side exhibited significantly worse trading performance. Psychological traits derived from a standardized personality inventory survey do not reveal any specific "trader personality profile", raising the possibility that trading skills may not necessarily be innate, and that different personality types may be able to perform trading functions equally well after proper instruction and practice.
Getmansky, Mila, Andrew W. Lo, and Shauna X. Mei (2004), Sifting Through the Wreckage: Lessons from Recent Hedge-Fund Liquidations, Journal of Investment Management 2 (4), 6–38.
View abstract
Hide abstract
We document the empirical properties of a sample of 1,765 funds in the TASS Hedge Fund database from 1994 to 2004 that are no longer active. The TASS sample shows that attrition rates differ significantly across investment styles, from a low of 5.2% per year on average for convertible arbitrage funds to a high of 14.4% per year on average for managed futures funds. We relate a number of factors to these attrition rates, including past performance, volatility, and investment style, and also document differences in illiquidity risk between active and liquidated funds. We conclude with a proposal for the U.S. Securities and Exchange Commission to play a new role in promoting greater transparency and stability in the hedge-fund industry.
Lo, Andrew W. (2011), Complexity, Concentration and Contagion: A Comment, Journal of Monetary Economics 58 (5), 471–479.
View abstract
Hide abstract
Although the precise origins of the term "complex adaptive system" are unclear, nevertheless, the hackneyed phrase is now firmly ensconced in the lexicon of biologists, physicists, mathematicians, and, most recently, economics. However, as with many important ideas that become cliches, the original meaning is often obscured and diluted by popular usage. But thanks to the fascinating article by Gai, Haldane, and Kapadia, we have a concrete and practical instantiation of a complex adaptive system in economics, one that has real relevance to current policy debates regarding financial reform. Since there is very little to criticize in their compelling article, I will seek to amplify their results and place them in a broader context in my comments.