Research
Farmer, J. Doyne, and Andrew W. Lo (1999), Frontiers of Finance: Evolution and Efficient Markets, Proceedings of the National Academy of Sciences 96, 9991–9992.
View abstract
Hide abstract
In this review article, we explore several recent advances in the quantitative modeling of financial markets. We begin with the Efficient Markets Hypothesis and describe how this controversial idea has stimulated a number of new directions of research, some focusing on more elaborate mathematical models that are capable of rationalizing the empirical facts, others taking a completely different tack in rejecting rationality altogether. One of the most promising directions is to view financial markets from a biological perspective and, specifically, within an evolutionary framework in which markets, instruments, institutions, and investors interact and evolve dynamically according to the "law" of economic selection. Under this view, financial agents compete and adapt, but they do not necessarily do so in an optimal fashion. Evolutionary and ecological models of financial markets is truly a new frontier whose exploration has just begun.
Lo, Andrew W. (2004), The Adaptive Markets Hypothesis: Market Efficiency from an Evolutionary Perspective, Journal of Portfolio Management 30 (5), 15–29.
View abstract
Hide abstract
One of the most influential ideas in the past 30 years of the Journal of Portfolio Management is the Efficient Markets Hypothesis, the idea that market prices incorporate all information rationally and instantaneously. However, the emerging discipline of behavioral economics and finance has challenged this hypothesis, arguing that markets are not rational, but are driven by fear and greed instead. Recent research in the cognitive neurosciences suggests that these two perspectives are opposite sides of the same coin. In this article I propose a new framework that reconciles market efficiency with behavioral alternatives by applying the principles of evolution—competition, adaptation, and natural selection—to financial interactions. By extending Herbert Simon's notion of "satisficing'' with evolutionary dynamics, I argue that much of what behavioralists cite as counterexamples to economic rationality—loss aversion, overconfidence, overreaction, mental accounting, and other behavioral biases—are, in fact, consistent with an evolutionary model of individuals adapting to a changing environment via simple heuristics. Despite the qualitative nature of this new paradigm, the Adaptive Markets Hypothesis offers a number of surprisingly concrete implications for the practice of portfolio management.
Lo, Andrew W. (1999), The Three P’s of Total Risk Management, Financial Analysts Journal 55 (1), 13–26.
View abstract
Hide abstract
Current risk-management practices are based on probabilities of extreme dollar losses (e.g., measures like Value at Risk), but these measures capture only part of the story. Any complete risk-management system must address two other important factors: prices and preferences. Together with probabilities, these comprise the three P's of Total Risk Management. This article describes how the three Ps interact to determine sensible risk profiles for corporations and for individuals, guidelines for how much risk to bear and how much to hedge. By synthesizing existing research in economics, psychology, and decision sciences, and through an ambitious research agenda to extend this synthesis into other disciplines, a complete and systematic approach to rational decision-making in an uncertain world is within reach.
It’s 11pm—Do You Know Where Your Liquidity Is? The Mean-Variance-Liquidity Frontier
Lo, Andrew W., Constantin Petrov, and Martin Wierzbicki (2003), It’s 11 PM—Do You Know Where Your Liquidity Is? The Mean-Variance-Liquidity Frontier, Journal of Investment Management 1 (1), 55–93.
View abstract
Hide abstract
We introduce liquidity into the standard mean-variance portfolio optimization framework by defining several measures of liquidity and then constructing three-dimensional mean-variance-liquidity frontiers in three ways—liquidity filtering, liquidity constraints, and a mean-variance-liquidity objective function. We show that portfolios close to each other on the traditional mean-variance efficient frontier can differ substantially in their liquidity characteristics. In a simple empirical example, the liquidity exposure of mean-variance efficient portfolios change dramatically from month to month, and even simple forms of liquidity optimization can yield significant benefits in reducing a portfolio's liquidity-risk exposure without sacrificing a great deal of expected return per unit risk.
Lo, Andrew W. (2002), Bubble, Rubble, Finance in Trouble?, Journal of Psychology and Financial Markets 3 (2), 76–86.
View abstract
Hide abstract
In this talk, I review the implications of the recent rise and fall of the technology sector for traditional financial theories and their behavioral alternatives. Although critics of the Efficient Markets Hypothesis argue that markets are driven by fear and greed, not fundamentals, recent research in the cognitive neurosciences suggest that these two perspectives are opposite sides of the same coin. I propose a new paradigm for financial economics that focuses more on the evolutionary biology and ecology of markets rather than the more traditional physicists' view. By marrying the principles of evolution to Herbert Simon's notion of "satisficing,'' I argue that much of what behavioralists cite as counter-examples to economic rationality—loss aversion, overconfidence, overreaction, mental accounting, and other behavioral biases—are, in fact, consistent with an evolutionary model of rational agents learning to adapt to their environment via satisficing heuristics.
Lo, Andrew W., and Dmitry V. Repin (2002), The Psychophysiology of Real-Time Financial Risk Processing, Journal of Cognitive Neuroscience 14 (3), 323–339.
View abstract
Hide abstract
A longstanding controversy in economics and finance is whether financial markets are governed by rational forces or by emotional responses. We study the importance of emotion in the decision making process of professional securities traders by measuring their physiological characteristics, e.g., skin conductance, blood volume pulse, etc., during live trading sessions while simultaneously capturing real-time prices from which market events can be detected. In a sample of 10 traders, we find significant correlation between electrodermal responses and transient market events, and between changes in cardiovascular variables and market volatility. We also observe differences in these correlations among the 10 traders which may be systematically related to the traders' levels of experience.
Lo, Andrew W., A. Craig MacKinlay, and June Zhang (2002), Econometric Models of Limit-Order Executions, Journal of Financial Economics 65 (1), 31–71.
View abstract
Hide abstract
Limit orders incur no price impact, however, their execution time is uncertain. We develop an econometric model of limit-order execution times using survival analysis, and estimate it with actual limit-order data. We estimate versions for time-to-first-fill and time-to-completion, and for limit-sells and limit-buys, and incorporate the effects of explanatory variables such as the limit price, the limit size, the bid/offer spread, and market volatility. We find that execution times are very sensitive to limit price and several other explanatory variables, but not sensitive to limit size. We also show that hypothetical limit-order executions, constructed either theoretically from first-passage times or empirically from transactions data, are very poor proxies for actual limit-order executions.
Haubrich, Joseph G., and Andrew W. Lo (2001), The Sources and Nature of Long-Term Dependence in the Business Cycle, Federal Reserve Bank of Cleveland Economic Review 37, 15–30.
View abstract
Hide abstract
This paper examines the stochastic properties of aggregate macroeconomic time series from the standpoint of fractionally integrated models, and focuses on the persistence of economic shocks. We develop a simple macroeconomic model that exhibits long-term dependence, a consequence of aggregation in the presence of real business cycles. We derive the relation between properties of fractionally integrated macroeconomic time series and those of microeconomic data, and discuss how fiscal policy may alter their stochastic behavior. To implement these results empirically, we employ a test for fractionally integrated time series based on the Hurst-Mandelbrot rescaled range. This test is robust to short-term dependence, and is applied to quarterly and annual real GNP to determine the sources and nature of long-term dependence in the business cycle.
Hedging Derivative Securities and Incomplete Markets: An Epsilon-Arbitrage Approach
Bertsimas, Dimitris, Leonid Kogan, and Andrew W. Lo (2001), Hedging Derivative Securities and Incomplete Markets: An Epsilon-Arbitrage Approach, Operations Research 49 (3), 372–397.
View abstract
Hide abstract
Given a European derivative security with an arbitrary payoff function and a corresponding set of underlying securities on which the derivative security is based, we solve the dynamic replication problem: find a self-financing dynamic portfolio strategy—involving only the underlying securities—that most closely approximates the payoff function at maturity. By applying stochastic dynamic programming to the minimization of a mean-squared-error loss function under Markov state-dynamics, we derive recursive expressions for the optimal-replication strategy that are readily implemented in practice. The approximation error or "epsilon" of the optimal-replication strategy is also given recursively and may be used to quantify the "degree" of market incompleteness. To investigate the practical significance of these epsilon-arbitrage strategies, we consider several numerical examples including path-dependent options and options on assets with stochastic volatility and jumps.
Haugh, Martin B., and Andrew W. Lo (2001), Computational Challenges in Portfolio Management, Computing in Science & Engineering 3 (3), 54–59.
View abstract
Hide abstract
The financial industry is one of the fastest-growing areas of scientific computing. Two decades ago, terms such as financial engineering, computational finance, and financial mathematics did not exist in common usage. Today, these areas are distinct and enormously popular academic disciplines with their own journals, conferences, and professional societies. One explanation for this area’s remarkable growth and the impressive array of mathematicians, computer scientists, physicists, and economists that are drawn to it is the formidable intellectual challenges intrinsic to financial markets. Many of the most basic problems in financial analysis are unsolved and surprisingly resilient to the onslaught of researchers from diverse disciplines. In this article, we hope to give a sense of these challenges by describing a relatively simple problem that all investors face when managing a portfolio of financial securities over time. Such a problem becomes more complex once real-world considerations factor into its formulation. We present the basic dynamic portfolio optimization problem and then consider three aspects of it: taxes, investor preferences, and portfolio constraints. These three issues are by no means exhaustive—they merely illustrate examples of the kinds of challenges financial engineers face today. Examples of other computational issues in portfolio optimization appear elsewhere.