Research
Bisias, Dimitrios, Andrew W. Lo, and James F. Watkins (2012), Estimating the NIH Efficient Frontier, PLoS ONE 7 (5), e34569.
View abstract
Hide abstract
BACKGROUND: The National Institutes of Health (NIH) is among the world’s largest investors in biomedical research, with a mandate to: "…lengthen life, and reduce the burdens of illness and disability." Its funding decisions have been criticized as insufficiently focused on disease burden. We hypothesize that modern portfolio theory can create a closer link between basic research and outcome, and offer insight into basic-science related improvements in public health. We propose portfolio theory as a systematic framework for making biomedical funding allocation decisions–one that is directly tied to the risk/reward trade-off of burden-of-disease outcomes.
METHODS AND FINDINGS: Using data from 1965 to 2007, we provide estimates of the NIH "efficient frontier", the set of funding allocations across 7 groups of disease-oriented NIH institutes that yield the greatest expected return on investment for a given level of risk, where return on investment is measured by subsequent impact on U.S. years of life lost (YLL). The results suggest that NIH may be actively managing its research risk, given that the volatility of its current allocation is 17% less than that of an equal-allocation portfolio with similar expected returns. The estimated efficient frontier suggests that further improvements in expected return (89% to 119% vs. current) or reduction in risk (22% to 35% vs. current) are available holding risk or expected return, respectively, constant, and that 28% to 89% greater decrease in average years-of-life-lost per unit risk may be achievable. However, these results also reflect the imprecision of YLL as a measure of disease burden, the noisy statistical link between basic research and YLL, and other known limitations of portfolio theory itself.
CONCLUSIONS: Our analysis is intended to serve as a proof-of-concept and starting point for applying quantitative methods to allocating biomedical research funding that are objective, systematic, transparent, repeatable, and expressly designed to reduce the burden of disease. By approaching funding decisions in a more analytical fashion, it may be possible to improve their ultimate outcomes while reducing unintended consequences.
Do Labyrinthine Legal Limits on Leverage Lessen the Likelihood of Losses? An Analytical Framework
Lo, Andrew W., and Thomas J. Brennan (2012), Do Labyrinthine Legal Limits on Leverage Lessen the Likelihood of Losses? An Analytical Framework, Texas Law Review 90, 1775–1810.
View abstract
Hide abstract
A common theme in the regulation of financial institutions and transactions is leverage constraints. Although such constraints are implemented in various ways—from minimum net capital rules to margin requirements to credit limits—the basic motivation is the same: to limit the potential losses of certain counterparties. However, the emergence of dynamic trading strategies, derivative securities, and other financial innovations poses new challenges to these constraints. We propose a simple analytical framework for specifying leverage constraints that addresses this challenge by explicitly linking the likelihood of financial loss to the behavior of the financial entity under supervision and prevailing market conditions. An immediate implication of this framework is that not all leverage is created equal, and any fixed numerical limit can lead to dramatically different loss probabilities over time and across assets and investment styles. This framework can also be used to investigate the macroprudential policy implications of microprudential regulations through the general-equilibrium impact of leverage constraints on market parameters such as volatility and tail probabilities.
Fernandez, Jose-Maria, Roger M. Stein, and Andrew W. Lo (2012), Commercializing Biomedical Research through Securitization Techniques, Nature Biotechnology 30 (10), 964–975.
View abstract
Hide abstract
Biomedical innovation has become riskier, more expensive and more difficult to finance with traditional sources such as private and public equity. Here we propose a financial structure in which a large number of biomedical programs at various stages of development are funded by a single entity to substantially reduce the portfolio's risk. The portfolio entity can finance its activities by issuing debt, a critical advantage because a much large pool of capital is available for investment in debt versus equity. By employing financial engineering techniques such as securitization, it can raise even greater amounts of more-patient capital. In a simulation using historical data for new molecular entities in oncology from 1990 to 2011, we find that megafunds of $5-15 billion may yield average investment returns of 8.9-11.4% for equity holders and 5-8% for 'research-backed obligation' holders, which are lower than typical venture-capital hurdle rates by attractive to pension funds, insurance companies and other large institutional investors. Open-source software available for download in link above.
Brennan, Thomas J., and Andrew W. Lo (2012), An Evolutionary Model of Bounded Rationality and Intelligence, PLoS ONE 7 (11), e50310.
View abstract
Hide abstract
BACKGROUND
Most economic theories are based on the premise that individuals maximize their own self-interest and correctly incorporate the structure of their environment into all decisions, thanks to human intelligence. The influence of this paradigm goes far beyond academia---it underlies current macroeconomic and monetary policies, and is also an integral part of existing financial regulations. However, there is mounting empirical and experimental evidence, including the recent financial crisis, suggesting that humans do not always behave rationally, but often make seemingly random and suboptimal decisions.
METHODS AND FINDINGS
Here we propose to reconcile these contradictory perspectives by developing a simple binary-choice model that takes evolutionary consequences of decisions into account as well as the role of intelligence, which we define as any ability of an individual to increase its genetic success. If no intelligence is present, our model produces results consistent with prior literature and shows that risks that are independent across individuals in a generation generally lead to risk-neutral behaviors, but that risks that are correlated across a generation can lead to behaviors such as risk aversion, loss aversion, probability matching, and randomization. When intelligence is present the nature of risk also matters, and we show that even when risks are independent, either risk-neutral behavior or probability matching will occur depending upon the cost of intelligence in terms of reproductive success. In the case of correlated risks, we derive an implicit formula that shows how intelligence can emerge via selection, why it may be bounded, and how such bounds typically imply the coexistence of multiple levels and types of intelligence as a reflection of varying environmental conditions.
CONCLUSIONS
Rational economic behavior in which individuals maximize their own self interest is only one of many possible types of behavior that arise from natural selection. The key to understanding which types of behavior are more likely to survive is how behavior affects reproductive success in a given population’s environment. From this perspective, intelligence is naturally defined as behavior that increases the probability of reproductive success, and bounds on rationality are determined by physiological and environmental constraints.
Lo, Andrew W. (2012), Adaptive Markets and the New World Order, Financial Analysts Journal 68 (2), 18–29.
View abstract
Hide abstract
In the Adaptive Markets Hypothesis (AMH) intelligent but fallible investors learn from and adapt to changing economic environments. This implies that markets are not always efficient, but are usually competitive and adaptive, varying in their degree of efficiency as the environment and investor population change over time. The AMH has several implications including the possibility of negative risk premia, alpha converging to beta, and the importance of macro factors and risk budgeting in asset-allocation policies.
Hasanhodzic, Jasmina, and Andrew W. Lo (2019), On Black’s Leverage Effect in Firms with No Leverage, Journal of Portfolio Management 46 (1), 106–122.
View abstract
Hide abstract
One of the most enduring empirical regularities in equity markets is the inverse relationship between stock prices and volatility. Also known as the “leverage effect”, this relationship was first documented by Black (1976), who attributed it to the effects of financial or operating leverage. This paper documents that firms which had no debt (and thus no financial leverage) from January 1973 to December 2017 exhibit Black’s leverage effect. Moreover, it finds that the leverage effect of firms in this sample is not driven by operating leverage. On the contrary, in this sample the leverage effect is stronger for firms with low operating leverage as compared to those with high operating leverage. Interestingly, the firms with no debt from the lowest quintile of operating leverage exhibit the leverage effect that is on par with or stronger than that of debt-financed firms.
Moore’s Law versus Murphy’s Law: Algorithmic Trading and Its Discontents
Kirilenko, Andrei A., and Andrew W. Lo (2013), Moore’s Law versus Murphy’s Law: Algorithmic Trading and Its Discontents, Journal of Economic Perspectives 27 (2), 51–72.
View abstract
Hide abstract
Financial markets have undergone a remarkable transformation over the past two decades due to advances in technology. These advances include faster and cheaper computers, greater connectivity among market participants, and perhaps most important of all, more sophisticated trading algorithms. The benefits of such financial technology are evident: lower transactions costs, faster executions, and greater volume of trades. However, like any technology, trading technology has unintended consequences. In this paper, we review key innovations in trading technology starting with portfolio optimization in the 1950s and ending with high-frequency trading in the late 2000s, as well as opportunities, challenges, and economic incentives that accompanied these developments. We also discuss potential threats to financial stability created or facilitated by algorithmic trading and propose “Financial Regulation 2.0,” a set of design principles for bringing the current financial regulatory framework into the Digital Age.
Using Algorithmic Attribution Techniques To Determine Authorship In Unsigned Judicial Opinions
Li, William, Pablo D. Azar, David Larochelle, Phil Hill, James Cox, Robert C. Berwick, and Andrew W. Lo (2013), Using Algorithmic Attribution Techniques to Determine Authorship in Unsigned Judicial Opinions, Stanford Technology Law Review 16 (3), 503–534.
View abstract
Hide abstract
This article proposes a novel and provocative analysis of judicial opinions that are published without indicating individual authorship. Our approach provides an unbiased, quantitative, and computer scientific answer to a problem that has long plagued legal commentators. Our work uses natural language processing to predict authorship of judicial opinions that are unsigned or whose attribution is disputed. Using a dataset of Supreme Court opinions with known authorship, we identify key words and phrases that can, to a high degree of accuracy, predict authorship. Thus, our method makes accessible an important class of cases heretofore inaccessible. For illustrative purposes, we explain our process as applied to the Obamacare decision, in which the authorship of a joint dissent was subject to significant popular speculation. We conclude with a chart predicting the author of every unsigned per curiam opinion during the Roberts Court.
Kaminski, Kathryn M., and Andrew W. Lo (2014), When Do Stop-Loss Rules Stop Losses?, Journal of Financial Markets 18 (1), 234–254.
View abstract
Hide abstract
We propose a simple analytical framework to measure the value added or subtracted by stoploss rules—predetermined policies that reduce a portfolio’s exposure after reaching a certain threshold of cumulative losses—on the expected return and volatility of an arbitrary portfolio strategy. Using daily futures price data, we provide an empirical analysis of stop-loss policies applied to a buy-and-hold strategy using index futures contracts. At longer sampling frequencies, certain stop-loss policies can increase expected return while substantially reducing volatility, consistent with their objectives in practical applications.
Fagnan, David E., Jose-Maria Fernandez, Andrew W. Lo, and Roger M. Stein (2013), Can Financial Engineering Cure Cancer?, American Economic Review 103 (3), 406–411.
View abstract
Hide abstract
In this paper, we describe a new approach to financing biomedical innovation that we first proposed in Fernandez, Stein, and Lo (2012) and extend in several ways here: using portfolio theory and securitization to reduce the risk of translational medicine. By combining a large number of drug-development projects within a single portfolio, a "megafund," it becomes possible to reduce the investment risk to such an extent that issuing bonds backed by these projects becomes feasible. Debt financing is a key innovation because the cost of each drug-development project can be several hundred million dollars; hence, a sufficiently diversified portfolio may require tens of billions of dollars of investment capital, and debt markets have much greater capacity than either private or public equity markets. If these bonds are structured to have different priorities, the most senior class or “tranche” may be rated by credit-rating agencies, opening up a much larger pool of institutional investors who can purchase such instruments, e.g., pension funds, sovereign wealth funds, endowments, and foundations. Open-source software available via the link above.