Research
Singh, Manish , Qingyang Xu, Sarah Wang, Tinah Hong, Mohammed Ghassemi, Andrew W. Lo (2022) Real-time Extended Psychophysiological Analysis of Financial Risk
Processing, PLoS ONE 17(7): e0
View abstract
Hide abstract
We study the relationships between the real-time psychophysiological activity of professional traders, their financial transactions, and market fluctuations. We collected multiple physiological signals such as heart rate, blood volume pulse, and electrodermal activity of 55 traders at a leading global financial institution during their normal working hours over a nfive-day period. Using their physiological measurements, we implemented a novel metric of
trader’s “psychophysiological activation” to capture affect such as excitement, stress and irritation. We find statistically significant relations between traders’ psychophysiological activation levels and such as their financial transactions, market fluctuations, the type of financial products they traded, and their trading experience. We conducted post-measurement interviews with traders who participated in this study to obtain additional insights in the key
factors driving their psychophysiological activation during financial risk processing. Our work illustrates that psychophysiological activation plays a prominent role in financial risk processing for professional traders.
Should We Allocate More COVID-19 Vaccine Doses to Non-vaccinated Individuals?
Ben Chaouch, Zied, Andrew W. Lo, Chi Heem Wong (2022), Should we allocate more COVID-19 vaccine doses to non-vaccinated individuals?, PLOS Glob Public Health 2(7): e0000498.
View abstract
Hide abstract
Following the approval by the FDA of two COVID-19 vaccines, which are administered in two doses three to four weeks apart, we simulate the effects of various vaccine distribution policies on the cumulative number of infections and deaths in the United States in the presence of shocks to the supply of vaccines. Our forecasts suggest that allocating more than 50% of available doses to individuals who have not received their first dose can significantly increase the number of lives saved and significantly reduce the number of COVID-19 infections. We find that a 50% allocation saves on average 33% more lives, and prevents on average 32% more infections relative to a policy that guarantees a second dose within the recommended time frame to all individuals who have already received their first dose. In fact, in the presence of supply shocks, we find that the former policy would save on average 8, 793 lives and prevents on average 607, 100 infections while the latter policy would save on average 6, 609 lives and prevents on average 460, 743 infections.
Siah, Kien Wei, Chi Heem Wong, Jerry Gupta, Andrew W. Lo (2022), Multimorbidity and mortality: A data science perspective, Journal of Multimorbidity and Comorbidity 12, 1-20.
View abstract
Hide abstract
Background: With multimorbidity becoming the norm rather than the exception, the management of multiple chronic diseases is a major challenge facing healthcare systems worldwide.
Methods: Using a large, nationally representative database of electronic medical records from the United Kingdom spanning the years 2005–2016 and consisting over 4.5 million patients, we apply statistical methods and network analysis to identify comorbid pairs and triads of diseases and identify clusters of chronic conditions across different demographic groups. Unlike many previous studies, which generally adopt cross-sectional designs based on single snapshots of closed cohorts, we adopt a longitudinal approach to examine temporal changes in the patterns of multimorbidity. In addition, we perform survival analysis to examine the impact of multimorbidity on mortality.
Results: The proportion of the population with multimorbidity has increased by approximately 2.5 percentage points over the last decade, with more than 17% having at least two chronic morbidities. We find that the prevalence and the severity of multimorbidity, as quantified by the number of co-occurring chronic conditions, increase progressively with age. Stratifying by socioeconomic status, we find that people living in more deprived areas are more likely to be multimorbid compared to those living in more affluent areas at all ages. The same trend holds consistently for all years in our data. In general, hypertension, diabetes, and respiratory-related diseases demonstrate high in-degree centrality and eigencentrality, while cardiac disorders show high out-degree centrality.
Conclusions: We use data-driven methods to characterize multimorbidity patterns in different demographic groups and their evolution over the past decade. In addition to a number of strongly associated comorbid pairs (e.g., cardiac-vascular and cardiac-metabolic disorders), we identify three principal clusters: a respiratory cluster, a cardiovascular cluster, and a mixed cardiovascular-renal-metabolic cluster. These are supported by established pathophysiological mechanisms and shared risk factors, and largely confirm and expand on the results of existing studies in the medical literature. Our findings contribute to a more quantitative understanding of the epidemiology of multimorbidity, an important pre-requisite for developing more effective medical care and policy for multimorbid patients.
Alvarez, Daniel L., Lo and Andrew W. Lo (2022), Differentiated dollars, Nature Biotechnology, 1546-1696.
View abstract
Hide abstract
Disease-focused foundations have used venture philanthropy (VP) for decades to develop interventions that have patient impact and generate revenue to support their mission. We articulate the distinguishing motives and features of VP funds and their distinct role in the life sciences innovation ecosystem. In particular, we focus on how entrepreneurs and VP funds can work together to help patients and generate economic value. We recommend that entrepreneurs seeking VP support understand a fund’s mission and objectives, and position themselves to fit the fund’s strategic and financial portfolio needs. Finally, we provide case studies of three specific initiatives — the JDRF T1D Fund, targeting type 1 (juvenile) diabetes; MPM Capital’s Oncology Impact Fund; and the American Heart Association’s Cardeation Capital — to showcase these efforts and benefits in practice.
Cummings, Jayna, Amanda Hu, Angela Su, and Andrew W. Lo (2022), Financing Alzheimer’s Disease Drug Development, In Alzheimer’s Disease Drug Development: Research and Development Ecosystem, edited by Jeffrey Cummings, Jefferson Kinney, and Howard Fillit, 465–479. Cambridge, UK: Cambridge University Press.
View abstract
Hide abstract
Alzheimer’s disease (AD) is one of the biggest challenges to modern medicine. However, before February 2021, the last AD drug approval occurred in 2003, implying a 100% failure rate of AD therapeutic programs over the 17 years to that point; the lowest probability of success among all diseases. One of the key challenges is funding, which we explore in more depth in this chapter by first reviewing the current funding landscape for AD, and then considering the strengths and weaknesses of various commercialization strategies. Despite the discouraging track record of the biopharma industry in addressing AD, there is reason to be hopeful due to substantial scientific progress in developing a deeper understanding of the biology of the disease as well as increased federal funding for AD research. However, we also we need the private sector to translate these scientific breakthroughs into new medicines, which takes additional funding and new business models so as to reduce risk and improve returns for investors. If we can change the narrative of AD therapeutics to give investors new hope, the private sector can serve as a powerful partner to the biomedical community.
Measuring the Economic and Academic Impact of Philanthropic Funding: The Breast Cancer Research Foundation
Vasileva, Detelina, Larry Norton, Marc Hurlbert, and Andrew W. Lo (2022), Measuring the Economic and Academic Impact of Philanthropic Funding: The Breast Cancer Research Foundation, Journal of Investment Management 20 (1), 5-24.
View abstract
Hide abstract
Using survey data gathered from grantees of the nonprofit Breast Cancer Research Foundation (BCRF), we investigated the commercial and non-commercial impacts of their research funding. We found significant impact in both domains. Commercially, 19.5% of BCRF grantees filed patents, 35.9% had a project that has reached clinical development, and 12 companies have or will be spun off from existing projects, thus creating 127 new jobs. Non-commercially, 441 graduate students have been trained by 116 grantees, 767 postdoctoral fellows have been trained by 137 grantees, 66%of grantees have used funding for faculty salaries, 93% have achieved collaboration with other researchers, and 42.7% have enacted process improvements in research methodology. Econometric analysis identifies BCRF funding and associated process improvements as key factors associated with the likelihood to file patents. However, we also found that the involvement of more than one institution in a collaborative project had a negative impact on subsequent development. This may point to frictions introduced by multi-university interactions.
Bandi, Federico M., Shomesh E. Chaudhuri, Andrew W. Lo, Andrea Tamoni (2021), Spectral factor models, Journal of Financial Economics 142, 214-238.
View abstract
Hide abstract
We represent risk factors as sums of orthogonal components capturing fluctuations with cycles of different length. The representation leads to novel spectral factor models in which systematic risk is allowed—without being forced—to vary across frequencies. Frequency- specific systematic risk is captured by a notion of spectral beta. We show that traditional factor models restrict the spectral betas to be constant across frequencies. The restriction can hide horizon-specific pricing effects that spectral factor models are designed to re- veal. We illustrate how the methods may lead to economically meaningful dimensionality reduction in the factor space.
Siah, Kien Wei, Qingyang Xu, Kirk Tanner, Olga Futer, John J. Frishkopf, and Andrew W. Lo (2021), Accelerating glioblastoma therapeutics via venture philanthropy, Drug Discovery Today, In Press, https://doi.org/10.1016/j.drudis.2021.03.020.
View abstract
Hide abstract
Development of curative treatments for glioblastoma (GBM) has been stagnant in recent decades largely because of significant financial risks. A portfolio-based strategy for the parallel discovery of breakthrough therapies can effectively reduce the financial risks of potentially transformative clinical trials for GBM. Using estimates from domain experts at the National Brain Tumor Society (NBTS), we analyze the performance of a portfolio of 20 assets being developed for GBM, diversified across different development phases and therapeutic mechanisms. We find that the portfolio generates a 14.9% expected annualized rate of return. By incorporating the adaptive trial platform GBM AGILE in our simulations, we show that at least one drug candidate in the portfolio will receive US Food and Drug Administration (FDA) approval with a probability of 79.0% in the next decade.
Lo, Andrew W., and Alexander Remorov (2021), Algorithmic Models of Investor Behavior, Journal of Systematic Investing 1 (1), 1-29.
View abstract
Hide abstract
We propose a heuristic approach to modeling investor behavior by simulating combinations of simpler systematic investment strategies associated with well-known behavioral biases—in functional forms motivated by an extensive review of the behavioral finance literature—using parameters calibrated from historical data. We compute the investment performance of these heuristics individually and in pairwise combinations using both simulated and historical asset-class returns. The mean-reversion or momentum nature of a heuristic can often explain its effect on performance, depending on whether asset returns are consistent with such dynamics. These algorithms show that seemingly irrational investor behavior may, in fact, have been shaped by evolutionary forces and can be effective in certain environments and maladaptive in others.
Parkinson’s Patients’ Tolerance for Risk and Willingness to Wait for Potential Benefits of Novel Neurostimulation Devices: A Patient-Centered Threshold Technique Study
Hauber, Brett , Brennan Mange, Mo Zhou, Shomesh Chaudhuri, Heather L Benz, Brittany Caldwell, John P Ruiz, Anindita Saha, Martin Ho, Stephanie Christopher, Dawn Bardot, Margaret Sheehan, Anne Donnelly, Lauren McLaughlin, Katrina Gwinn, Andrew W. Lo, and Murray Sheldon (2021), Parkinson's Patients' Tolerance for Risk and Willingness to Wait for Potential Benefits of Novel Neurostimulation Devices: A Patient-Centered Threshold Technique Study, MDM Policy & Practice, 1-13.
View abstract
Hide abstract
Background. Parkinson's disease (PD) is neurodegenerative, causing motor, cognitive, psychological, somatic, and autonomic symptoms. Understanding PD patients' preferences for novel neurostimulation devices may help ensure that devices are delivered in a timely manner with the appropriate level of evidence. Our objective was to elicit preferences and willingness-to-wait for novel neurostimulation devices among PD patients to inform a model of optimal trial design. Methods. We developed and administered a survey to PD patients to quantify the maximum levels of risks that patients would accept to achieve potential benefits of a neurostimulation device. Threshold technique was used to quantify patients' risk thresholds for new or worsening depression or anxiety, brain bleed, or death in exchange for improvements in "on-time," motor symptoms, pain, cognition, and pill burden. The survey elicited patients' willingness to wait to receive treatment benefit. Patients were recruited through Fox Insight, an online PD observational study. Results. A total of 2740 patients were included and a majority were White (94.6%) and had a 4-year college degree (69.8%). Risk thresholds increased as benefits increased. Threshold for depression or anxiety was substantially higher than threshold for brain bleed or death. Patient age, ambulation, and prior neurostimulation experience influenced risk tolerance. Patients were willing to wait an average of 4 to 13 years for devices that provide different levels of benefit. Conclusions. PD patients are willing to accept substantial risks to improve symptoms. Preferences are heterogeneous and depend on treatment benefit and patient characteristics. The results of this study may be useful in informing review of device applications and other regulatory decisions and will be input into a model of optimal trial design for neurostimulation devices.