Research
Lo, Andrew W. (2009), Regulatory Reform in the Wake of the Financial Crisis of 2007-2008, Journal of Financial Economic Policy 1 (1), 4–43.
View abstract
Hide abstract
Financial crises are unavoidable when hardwired human behavior—fear and greed, or "animal spirits"—is combined with free enterprise, and cannot be legislated or regulated away. Like hurricanes and other forces of nature, market bubbles and crashes cannot be entirely eliminated, but their most destructive consequences can be greatly mitigated with proper preparation. In fact, the most damaging effects of financial crisis come not from loss of wealth, but rather from those who are unprepared for such losses and panic in response. This perspective has several implications for the types of regulatory reform needed in the wake of the Financial Crisis of 2007-2008, all centered around the need for greater transparency, improved measures of systemic risk, more adaptive regulations including counter-cyclical leverage constraints, and more emphasis on financial literacy starting in high school, including certifications for expertise in financial engineering for the senior management and directors of all financial institutions.
Where Do Alphas Come From?: A New Measure of the Value of Active Investment Management
Lo, Andrew W. (2008), Where Do Alphas Come From?: A Measure of the Value of Active Investment Management, Journal of Investment Management 6 (3), 6–34.
View abstract
Hide abstract
The value of active investment management is traditionally measured by alpha, beta, tracking error, and the Sharpe and information ratios. These are essentially static characteristics of the marginal distributions of returns at a single point in time, and do not incorporate dynamic aspects of a manager's investment process. In this paper, I propose a new measure of the value of active investment management that captures both static and dynamic contributions of a portfolio manager's decisions. The measure is based on a decomposition of a portfolio's expected return into two distinct components: a static weighted-average of the individual securities' expected returns, and the sum of covariances between returns and portfolio weights. The former component measures the portion of the manager's expected return due to static investments in the underlying securities, while the latter component captures the forecast power implicit in the manager's dynamic investment choices. This measure can be computed for long-only investments, long/short portfolios, and asset allocation rules, and is particularly relevant for hedge-fund strategies where both components are significant contributors to their expected returns, but only one should garner the high fees that hedge funds typically charge. Several analytical and empirical examples are provided to illustrate the practical relevance of these new measures.
Lo, Andrew W., and Pankaj N. Patel (2008), 130/30: The New Long-Only, Journal of Portfolio Management 34 (2), 12–38.
View abstract
Hide abstract
Long-only portfolio managers and investors have acknowledged that the long-only constraint is a potentially costly drag on performance, and loosening this constraint can add value. However, the magnitude of the performance drag is difficult to measure without a proper benchmark for a 130/30 portfolio. In this paper, we provide a passive but dynamic benchmark consisting of a 'plain-vanilla' 130/30 strategy using simple factors to rank stocks and standard methods for constructing portfolios based on these rankings. Based on this strategy, we produce two types of indexes: investable and 'look ahead' indexes, in which the former uses only prior information and the latter uses realized returns to produce an upper bound on performance. We provide historical simulations of our 130/30 benchmarks that illustrate their advantages and disadvantages under various market conditions.
Khandani, Amir E., and Andrew W. Lo (2007), What Happened to the Quants in August 2007?, Journal of Investment Management 5 (4), 29–78.
View abstract
Hide abstract
During the week of August 6, 2007, a number of quantitative long/short equity hedge funds experienced unprecedented losses. Based on TASS hedge-fund data and simulations of a specific long/short equity strategy, we hypothesize that the losses were initiated by the rapid "unwind" of one or more sizable quantitative equity market-neutral portfolios. Given the speed and price impact with which this occurred, it was likely the result of a forced liquidation by a multi-strategy fund or proprietary-trading desk, possibly due to a margin call or a risk reduction. These initial losses then put pressure on a broader set of long/short and long-only equity portfolios, causing further losses by triggering stop/loss and de-leveraging policies. A significant rebound of these strategies occurred on August 10th, which is also consistent with the unwind hypothesis. This dislocation was apparently caused by forces outside the long/short equity sector—in a completely unrelated set of markets and instruments—suggesting that systemic risk in the hedge-fund industry may have increased in recent years.
Hasanhodzic, Jasmina, and Andrew W. Lo (2007), Can Hedge-Fund Returns Be Replicated?: The Linear Case, Journal of Investment Management 5 (2), 5–45.
View abstract
Hide abstract
In contrast to traditional investments such as stocks and bonds, hedge-fund returns have more complex risk exposures that yield additional and complementary sources of risk premia. This raises the possibility of creating passive replicating portfolios or "clones" using liquid exchange-traded instruments that provide similar risk exposures at lower cost and with greater transparency. Using monthly returns data for 1,610 hedge funds in the TASS database from 1986 to 2005, we estimate linear factor models for individual hedge funds using six common factors, and measure the proportion of the funds' expected returns and volatility that are attributable to such factors. For certain hedge-fund style categories, we find that a significant fraction of both can be captured by common factors corresponding to liquid exchange-traded instruments. While the performance of linear clones is often inferior to their hedge-fund counterparts, they perform well enough to warrant serious consideration as passive, transparent, scalable, and lower-cost alternatives to hedge funds.
Trading Volume: Implications of an Intertemporal Capital Asset Pricing Model
Lo, Andrew W., and Jiang Wang (2006), Trading Volume: Implications of an Intertemporal Capital Asset Pricing Model, Journal of Finance 61 (6), 2805–2840.
View abstract
Hide abstract
We derive an intertemporal capital asset pricing model with multiple assets and heterogeneous investors, and explore its implications for the behavior of trading volume and asset returns. Assets contain two types of risks: market risk and the risk of changing market conditions. We show that investors trade only in two portfolios: the market portfolio, and a hedging portfolio, which allows them to hedge the dynamic risk. This implies that trading volume of individual assets exhibit a two-factor structure, and their factor loadings depend on their weights in the hedging portfolio. This allows us to empirically identify the hedging portfolio using volume data. We then test the two properties of the hedging portfolio: its return provides the best predictor of future market returns and its return together with the return of the market portfolio are the two risk factors determining the cross-section of asset returns.
Lo, Andrew W. (2005), Reconciling Efficient Markets with Behavioral Finance: The Adaptive Markets Hypothesis, Journal of Investment Consulting 7 (2), 21–44.
View abstract
Hide abstract
The battle between proponents of the Efficient Markets Hypothesis and champions of behavioral finance has never been more pitched, and there is little consensus as to which side is winning or what the implications are for investment management and consulting. In this article, I review the case for and against the Efficient Markets Hypothesis, and describe a new framework—the Adaptive Markets Hypothesis—in which the traditional models of modern financial economics can co-exist alongside behavioral models in an intellectually consistent manner. Based on evolutionary principles, the Adaptive Markets Hypothesis implies that the degree of market efficiency is related to environmental factors characterizing market ecology such as the number of competitors in the market, the magnitude of profit opportunities available, and the adaptability of the market participants. Many of the examples that behavioralists cite as violations of rationality that are inconsistent with market efficiency—loss aversion, overconfidence, overreaction, mental accounting, and other behavioral biases—are, in fact, consistent with an evolutionary model of individuals adapting to a changing environment via simple heuristics. Despite the qualitative nature of this new paradigm, I show that the Adaptive Markets Hypothesis yields a number of surprisingly concrete applications for both investment managers and consultants.
Lo, Andrew W., Dmitry V. Repin, Brett N. Steenbarger, David Laibson, David Hirshleifer, and Kevin McCabe (2005), Fear and Greed in Financial Markets: A Clinical Study of Day-Traders, American Economic Review 95 (2), 352–359.
View abstract
Hide abstract
We investigate several possible links between psychological factors and trading performance in a sample of 80 anonymous day-traders. Using daily emotional-state surveys over a five-week period as well as personality inventory surveys, we construct measures of personality traits and emotional states for each subject and correlate these measures with daily normalized profits-and-losses records. We find that subjects whose emotional reaction to monetary gains and losses was more intense on both the positive and negative side exhibited significantly worse trading performance. Psychological traits derived from a standardized personality inventory survey do not reveal any specific "trader personality profile", raising the possibility that trading skills may not necessarily be innate, and that different personality types may be able to perform trading functions equally well after proper instruction and practice.
Getmansky, Mila, Andrew W. Lo, and Shauna X. Mei (2004), Sifting Through the Wreckage: Lessons from Recent Hedge-Fund Liquidations, Journal of Investment Management 2 (4), 6–38.
View abstract
Hide abstract
We document the empirical properties of a sample of 1,765 funds in the TASS Hedge Fund database from 1994 to 2004 that are no longer active. The TASS sample shows that attrition rates differ significantly across investment styles, from a low of 5.2% per year on average for convertible arbitrage funds to a high of 14.4% per year on average for managed futures funds. We relate a number of factors to these attrition rates, including past performance, volatility, and investment style, and also document differences in illiquidity risk between active and liquidated funds. We conclude with a proposal for the U.S. Securities and Exchange Commission to play a new role in promoting greater transparency and stability in the hedge-fund industry.
Lo, Andrew W. (2011), Complexity, Concentration and Contagion: A Comment, Journal of Monetary Economics 58 (5), 471–479.
View abstract
Hide abstract
Although the precise origins of the term "complex adaptive system" are unclear, nevertheless, the hackneyed phrase is now firmly ensconced in the lexicon of biologists, physicists, mathematicians, and, most recently, economics. However, as with many important ideas that become cliches, the original meaning is often obscured and diluted by popular usage. But thanks to the fascinating article by Gai, Haldane, and Kapadia, we have a concrete and practical instantiation of a complex adaptive system in economics, one that has real relevance to current policy debates regarding financial reform. Since there is very little to criticize in their compelling article, I will seek to amplify their results and place them in a broader context in my comments.