Research
Bertsimas, Dimitris, and Andrew W. Lo (1998), Optimal Control of Execution Costs, Journal of Financial Markets 1 (1), 1–50.
View abstract
Hide abstract
We derive dynamic optimal trading strategies that minimize the expected cost of trading a large block of equity over a fixed time horizon. Specifically, given a fixed block S of shares to be executed within a fixed finite number of periods T, and given a price-impact function that yields the execution price of an individual trade as a function of the shares traded and market conditions, we obtain the optimal sequence of trades as a function of market conditions—closed-form expressions in some cases—that minimizes the expected cost of executing S within T periods. Our analysis is extended to the portfolio case in which price impact across stocks can have an important effect on the total cost of trading a portfolio.
Nonparametric Estimation of State-Price Densities Implicit In Financial Asset Prices
Aït-Sahalia, Yacine, and Andrew W. Lo (1998), Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices, Journal of Finance 53 (2), 499–547.
View abstract
Hide abstract
Implicit in the prices of traded financial assets are Arrow-Debreu state prices or, in the continuous-state case, the state-price density [SPD]. We construct an estimator for the SPD implicit in option prices and derive an asymptotic sampling theory for this estimator to gauge its accuracy. The SPD estimator provides an arbitrage-free method of pricing new, more complex, or less liquid securities while capturing those features of the data that are most relevant from an asset-pricing perspective, e.g., negative skewness and excess kurtosis for asset returns, volatility "smiles" for option prices. We perform Monte Carlo simulation experiments to show that the SPD estimator can be successfully extracted from option prices and we present an empirical application using S&P 500 index options.
Lo, Andrew W., and A. Craig MacKinlay (1997), Maximizing Predictability in the Stock and Bond Markets, Macroeconomic Dynamics 1 (1), 102–134.
View abstract
Hide abstract
We construct portfolios of stocks and of bonds that are maximally predictable with respect to a set of ex ante observable economic variables, and show that these levels of predictability are statistically significant, even after controlling for data-snooping biases. We disaggregate the sources for predictability by using several asset groups—sector portfolios, market-capitalization portfolios, and stock/bond/utility portfolios—and find that the sources of maximal predictability shift considerably across asset classes and sectors as the return-horizon changes. Using three out-of-sample measures of predictability—forecast errors, Merton's market-timing measure, and the profitability of asset allocation strategies based on maximizing predictability—we show that the predictability of the maximally predictable portfolio is genuine and economically significant.
Lo, Andrew W., and Jiang Wang (1995), Implementing Option Pricing Models When Asset Returns Are Predictable, Journal of Finance 50 (1), 87–129.
View abstract
Hide abstract
The predictability of an asset's returns will affect option prices on that asset, even though predictability is typically induced by the drift which does not enter the option pricing formula. For discretely-sampled data, predictability is linked to the parameters that do enter the option pricing formula. We construct an adjustment for predictability to the Black-Scholes formula and show that this adjustment can be important even for small levels of predictability, especially for longer-maturity options. We propose several continuous-time linear diffusion processes that can capture broader forms of predictability, and provide numerical examples that illustrate their importance for pricing options.
A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks
Hutchinson, James M., Andrew W. Lo, and Tomaso Poggio (1994), A Nonparametric Approach to Pricing and Hedging Derivative Securities Via Learning Networks, Journal of Finance 49 (3), 851–889.
View abstract
Hide abstract
We propose a nonparametric method for estimating the pricing formula of a derivative asset using learning networks. Although not a substitute for the more traditional arbitrage-based pricing formulas, network pricing formulas may be more accurate and computationally more efficient alternatives when the underlying asset's price dynamics are unknown, or when the pricing equation associated with no-arbitrage condition cannot be solved analytically. To assess the potential value of network pricing formulas, we simulate Black-Scholes option prices and show that learning networks can recover the Black-Scholes formula from a six-month training set of daily options prices, and that the resulting network formula can be used successfully to both price and delta-hedge options out-of-sample. For purposes of comparison, we perform similar simulation experiments for four other methods of estimation: OLS, kernel regression, projection pursuit, and multilayer perceptron networks. To illustrate the practical relevance of our network pricing approach, we apply it to the pricing and delta-hedging of S&P 500 futures options from 1987 to 1991.
Hausman, Jerry A., Andrew W. Lo, and A. Craig MacKinlay (1992), An Ordered Probit Analysis of Transaction Stock Prices, Journal of Financial Economics 31 (3), 319–379.
View abstract
Hide abstract
We estimate the conditional distribution of trade-to-trade price changes using ordered probit, a statistical model for discrete random variables. This approach recognizes that transaction price changes occur in discrete increments, typically eighths of a dollar, and occur at irregularly-spaced time intervals. Unlike existing models of discrete transaction prices, ordered probit can quantify the effects of other economic variables like volume, past price changes, and the time between trades on price changes. Using 1988 transactions data for over 100 randomly chosen U.S. stocks, we estimate the ordered probit model via maximum likelihood and use the parameter estimates to measure several transaction-related quantities, such as the price impact of the trades of a given size, the tendency towards price reversals from one transaction to the next, and the empirical significance of price discreteness.
Lo, Andrew W. (1991), Long-Term Memory in Stock Market Prices, Econometrica 59 (5), 1279–1313.
View abstract
Hide abstract
A test for long-run memory that is robust to short-range dependence is developed. It is an extension of the "range over standard deviation" or R/S statistic, for which the relevant asymptotic sampling theory is derived via functional central limit theory. This test is applied to daily and monthly stock returns indexed over several time periods and, contrary to previous findings, there is no evidence of long-range dependence in any of the indexes over any sample period or sub-period once short-range dependence is taken into account. Illustrative Monte Carlo experiments indicate that the modified R/S test has power against at least two specific models of long-run memory, suggesting that stochastic models of short-range dependence may adequately capture the time series behavior of stock returns.
Lo, Andrew W., and A. Craig MacKinlay (1990), Data-Snooping Biases in Tests of Financial Asset Pricing Models, Review of Financial Studies 3 (3), 431–467.
View abstract
Hide abstract
Tests of financial asset pricing models may yield misleading inferences when properties of the data are used to construct the test statistics. In particular, such tests are often based on returns to portfolios of common stock, where portfolios are constructed by sorting some empirically motivated characteristic of the securities such as market value of equity. Analytical calculations, Monte Carlo simulations, and two empirical examples show the effects of this type of data snooping can be substantial.
Lo, Andrew W., and A. Craig MacKinlay (1990), When Are Contrarian Profits Due to Stock Market Overreaction?, Review of Financial Studies 3 (2), 175–205.
View abstract
Hide abstract
If returns on some stocks systematically lead or lag those of others, a portfolio strategy that sells "winners" and "losers" can produce positive expected returns, even if no stock's returns are negatively autocorrelated as virtually all models of overreaction imply. Using a particular contrarian strategy we show that, despite negative autocorrelation in individual stock returns, weekly portfolio returns are strongly positively autocorrelated and are the result of important cross-autocorrelations. We find that the returns of large stocks lead those of smaller stocks, and we present evidence against overreaction as the only source of contrarian profits.
Lo, Andrew W., and A. Craig MacKinlay (1990), An Econometric Analysis of Nonsynchronous Trading, Journal of Econometrics 45 (1–2), 181–211.
View abstract
Hide abstract
We develop a stochastic model of nonsynchronous asset prices based on sampling with random censoring. In addition to generalizing existing models of nontrading, our framework allows the explicit calculation of the effects of infrequent trading on the time series properties of asset returns. These are empirically testable implications for the variance, autocorrelations, and cross-autocorrelations of returns to individual stocks as well as to portfolios. We construct estimators to quantify the magnitude of nontrading effects in commonly used stock returns data bases, and show the extent to which this phenomenon is responsible for the recent rejections of the random walk hypothesis.