Publications
Econometric Models of Limit-Order Executions
2002Limit orders incur no price impact, however, their execution time is uncertain. We develop an econometric model of limit-order execution times using survival analysis, and estimate it with actual limit-order data. We estimate versions for time-to-first-fill and time-to-completion, and for limit-sells and limit-buys, and incorporate the effects of explanatory variables such as the limit price, the limit size, the bid/offer spread, and market volatility. We find that execution times are very sensitive to limit price and several other explanatory variables, but not sensitive to limit size. We also show that hypothetical limit-order executions, constructed either theoretically from first-passage times or empirically from transactions data, are very poor proxies for actual limit-order executions.
Bubble, Rubble, Finance In Trouble?
2002In this talk, I review the implications of the recent rise and fall of the technology sector for traditional financial theories and their behavioral alternatives. Although critics of the Efficient Markets Hypothesis argue that markets are driven by fear and greed, not fundamentals, recent research in the cognitive neurosciences suggest that these two perspectives are opposite sides of the same coin. I propose a new paradigm for financial economics that focuses more on the evolutionary biology and ecology of markets rather than the more traditional physicists' view. By marrying the principles of evolution to Herbert Simon's notion of "satisficing,'' I argue that much of what behavioralists cite as counter-examples to economic rationality—loss aversion, overconfidence, overreaction, mental accounting, and other behavioral biases—are, in fact, consistent with an evolutionary model of rational agents learning to adapt to their environment via satisficing heuristics.
Risk Management for Hedge Funds: Introduction and Overview
2001Although risk management has been a well-plowed field in financial modeling for over two decades, traditional risk management tools such as mean-variance analysis, beta, and Value-at-Risk do not capture many of the risk exposures of hedge-fund investments. In this article, I review several aspects of risk management that are unique to hedge funds - survivorship bias, dynamic risk analytics, liquidity, and nonlinearities - and provide examples that illustrate their potential importance to hedge-fund managers and investors. I propose a research agenda for developing a new set of risk analytics specifically designed for hedge-fund investments, with the ultimate goal of creating risk transparency while, at the same time, protecting the proprietary nature of hedge-fund investment strategies.
Personal Indexes
2001Artificial intelligence has transformed financial technology in many ways and in this review article, three of the most promising applications are discussed: neural networks, data mining, and pattern recognition. Just as indexes are meant to facilitate the summary and extraction of information in an efficient manner, sophisticated automated algorithms can now perform similar functions but at higher and more powerful levels. In some cases, artificial intelligence can save us from natural stupidity.
Agent-Based Models of Financial Markets: A Comparison with Experimental Markets (Working Paper)
2001We construct a computer simulation of a repeated double-auction market, designed to match those in experimental-market settings with human subjects, to model complex interactions among artificially-intelligent traders endowed with varying degrees of learning capabilities. In the course of six different experimental designs, we investigate a number of features of our agent-based model: the price efficiency of the market, the speed at which prices converge to the rational expectations equilibrium price, the dynamics of the distribution of wealth among the different types of AI-agents, trading volume, bid/ask spreads, and other aspects of market dynamics. We are able to replicate several findings of human-based experimental markets, however, we also find intriguing differences between agent-based and human-based experiments.
The Sources and Nature of Long-Term Dependence in the Business Cycle
2001This paper examines the stochastic properties of aggregate macroeconomic time series from the standpoint of fractionally integrated models, and focuses on the persistence of economic shocks. We develop a simple macroeconomic model that exhibits long-term dependence, a consequence of aggregation in the presence of real business cycles. We derive the relation between properties of fractionally integrated macroeconomic time series and those of microeconomic data, and discuss how fiscal policy may alter their stochastic behavior. To implement these results empirically, we employ a test for fractionally integrated time series based on the Hurst-Mandelbrot rescaled range. This test is robust to short-term dependence, and is applied to quarterly and annual real GNP to determine the sources and nature of long-term dependence in the business cycle.
Asset Allocation and Derivatives
2001The fact that derivative securities are equivalent to specific dynamic trading strategies in complete markets suggests the possibility of constructing buy-and-hold portfolios of options that mimic certain dynamic investment policies, e.g., asset-allocation rules. We explore this possibility by solving the following problem: given an optimal dynamic investment policy, find a set of options at the start of the investment horizon which will come closest to the optimal dynamic investment policy. We solve this problem for several combinations of preferences, return dynamics, and optimality criteria, and show that under certain conditions, a portfolio consisting of just a few options is an excellent substitute for considerably more complex dynamic investment policies.
Hedging Derivative Securities and Incomplete Markets: An Epsilon-Arbitrage Approach
2001Given a European derivative security with an arbitrary payoff function and a corresponding set of underlying securities on which the derivative security is based, we solve the dynamic replication problem: find a self-financing dynamic portfolio strategy—involving only the underlying securities—that most closely approximates the payoff function at maturity. By applying stochastic dynamic programming to the minimization of a mean-squared-error loss function under Markov state-dynamics, we derive recursive expressions for the optimal-replication strategy that are readily implemented in practice. The approximation error or "epsilon" of the optimal-replication strategy is also given recursively and may be used to quantify the "degree" of market incompleteness. To investigate the practical significance of these epsilon-arbitrage strategies, we consider several numerical examples including path-dependent options and options on assets with stochastic volatility and jumps.
Computational Challenges in Portfolio Management
2001The financial industry is one of the fastest-growing areas of scientific computing. Two decades ago, terms such as financial engineering, computational finance, and financial mathematics did not exist in common usage. Today, these areas are distinct and enormously popular academic disciplines with their own journals, conferences, and professional societies. One explanation for this area’s remarkable growth and the impressive array of mathematicians, computer scientists, physicists, and economists that are drawn to it is the formidable intellectual challenges intrinsic to financial markets. Many of the most basic problems in financial analysis are unsolved and surprisingly resilient to the onslaught of researchers from diverse disciplines. In this article, we hope to give a sense of these challenges by describing a relatively simple problem that all investors face when managing a portfolio of financial securities over time. Such a problem becomes more complex once real-world considerations factor into its formulation. We present the basic dynamic portfolio optimization problem and then consider three aspects of it: taxes, investor preferences, and portfolio constraints. These three issues are by no means exhaustive—they merely illustrate examples of the kinds of challenges financial engineers face today. Examples of other computational issues in portfolio optimization appear elsewhere.
Finance: A Selective Survey
2001Ever since the publication in 1565 of Girolamo Cardano's treatise on gambling, Liber de Ludo Aleae (The Book of Games of Chance), statistics and financial markets have become inextricably linked. Over the past few decades many of these links have become part of the canon of modern finance, and it is now impossible to fully appreciate the workings of financial markets without them. This selective survey covers three of the most important ideas of finance—efficient markets, the random walk hypothesis, and derivative pricing models—that illustrate the enormous research opportunities that lie at the intersection of finance and statistics.
Computational Finance 1999
2000
This book covers the techniques of data mining, knowledge discovery, genetic algorithms, neural networks, bootstrapping, machine learning, and Monte Carlo simulation.
Computational finance, an exciting new cross-disciplinary research area, draws extensively on the tools and techniques of computer science, statistics, information systems, and financial economics. This book covers the techniques of data mining, knowledge discovery, genetic algorithms, neural networks, bootstrapping, machine learning, and Monte Carlo simulation. These methods are applied to a wide range of problems in finance, including risk management, asset allocation, style analysis, dynamic trading and hedging, forecasting, and option pricing. The book is based on the sixth annual international conference Computational Finance 1999, held at New York University's Stern School of Business.
Nonparametric Risk Management and Implied Risk Aversion
2000Typical value-at-risk (VAR) calculations involve the probabilities of extreme dollar losses, based on the statistical distributions of market prices. Such quantities do not account for the fact that the same dollar loss can have two very different economic valuations, depending on business conditions. We propose a nonparametric VAR measure that incorporates economic valuation according to the state-price density associated with the underlying price processes. The state-price density yields VAR values that are adjusted for risk aversion, time preferences, and other variations in economic valuation. In the context of a representative agent equilibrium model, we construct an estimator of the risk-aversion coefficient that is implied by the joint observations on option prices and underlying asset value.
Optimal Control of Execution Costs for Portfolios
2000The dramatic growth in institutionally managed assets, coupled with the advent of internet trading and electronic brokerage for retail investors, has led to a surge in the size and volume of trading. At the same time, competition in the asset management industry has increased to the point where fractions of a percent in performance can separate the top funds from those in the next tier. In this environment, portfolio managers have begun to explore active management of trading costs as a means of boosting returns. Controlling execution cost can be viewed as a stochastic dynamic optimization problem because trading takes time, stock prices exhibit random fluctuations, and execution prices depend on trade size, order flow, and market conditions. In this paper, we apply stochastic dynamic programming to derive trading strategies that minimize the expected cost of executing a portfolio of securities over a fixed period of time, i.e., we derive the optimal sequence of trades as a function of prices, quantitites, and other market conditions. To illustrate the practical relevance of our methods, we apply them to a hypothetical portfolio of 25 stocks by estimating their price-impact functions using historical trade data from 1996 and deriving the optimal execution strategies. We also perform several Monte Carlo simulation experiments to compare the performance of the optimal strategy to several alternatives.
Trading Volume: Definitions, Data Analysis, and Implications of Portfolio Theory
2000We examine the implications of portfolio theory for the cross-sectional behavior of equity trading volume. We begin by showing that a two-fund separation theorem suggests a natural definition for trading volume: share turnover. If two-fund separation holds, share turnover must be identical for all securities. If (K+1)-fund separation holds, we show that share turnover satisfies and approximate linear K-factor structure, These implications are empirically tested using weekly turnover data for NYSE and AMEX securities from 1962 to 1996. We find strong evidence against two-fund separation and an eigenvalue decomposition suggests that volume is driven by a two-factor linear model. Click here to download Trading Volume and the MiniCRSP Database: An Introduction and User’s Guide for instructions on how to create your own MiniCRSP database.
When Is Time Continuous?
2000In this paper we study the tracking error resulting from the discrete-time application of continuous-time delta-hedging procedures for European options. We characterize the asymptotic distribution of the tracking error as the number of discrete time periods increases, and its joint distribution with other assets. We introduce the notion of temporal granularity of the continuous-time stochastic model that enables us to characterize the degree to which discrete-time approximations of continuous time models track the payoff of the option. We derive closed form expressions for the granularity for a put and call option on a stock that follows a geometric Brownian motion and a mean-reverting process. These expressions offer insight into the tracking error involved in applying continuous-time delta-hedging in discrete time. We also introduce alternative measures of the tracking error and analyze their properties.
