Publications
The FTSE StableRisk Indices
2011Implicit in most asset-allocation policies is the statistical assumption of “stationarity,” which means that the means, variances, and covariances of asset returns are assumed to be constant over time. This assumption is a reasonable approximation during normal market conditions but fails dramatically during periods of market turmoil and dislocation. In such periods, market volatility is highly dynamic, correlations can jump to 100% in a matter of days, and risk premia can become negative for months at a time. FTSE and AlphaSimplex Group have developed a family of rule-driven (passive), transparent, and high-capacity indices whose volatilities are rescaled as often as daily with the goal of maintaining more stable risk levels. By stabilizing the risk of each asset class over time, the FTSE StableRisk Indices have the potential to capture the long-term risk premia of asset classes and simple strategies with less severe maximum drawdowns than those of traditional indices, which have no risk controls.
Managing Real-Time Risks and Returns: The Thomson Reuters NewsScope Event Indices
2011As financial markets grow in size and complexity, risk management protocols must also evolve to address more challenging demands. One of the most difficult of these challenges is managing event risk, the risk posed by unanticipated news that causes major market moves over short time intervals. Often cited but rarely managed, event risk has been relegated to the domain of qualitative judgment and discretion because of its heterogeneity and velocity. In this chapter, we describe one initiative aimed at solving this problem. The Thomson Reuters NewsScope Event Indices Project is an integrated framework for incorporating real-time news from the Thomson Reuters NewsScope subscription service into systematic investment and risk management protocols. The framework consists of a set of real-time event indices—each one taking on numerical values between 0 and 100—designed to capture the occurrence of unusual events of a particular kind. Each index is constructed by applying disciplined pattern recognition algorithms to real-time news feeds, and validated using econometric methods applied to historical data.
A Computational View of Market Efficiency
2011We propose to study market efficiency from a computational viewpoint. Borrowing from theoretical computer science, we define a market to be efficient with respect to resources S (e.g., time, memory) if no strategy using resources S can make a profit. As a first step, we consider memory-m strategies whose action at time t depends only on the m previous observations at times t - m,...,t - 1. We introduce and study a simple model of market evolution, where strategies impact the market by their decision to buy or sell. We show that the effect of optimal strategies using memory m can lead to "market conditions" that were not present initially, such as (1) market bubbles and (2) the possibility for a strategy using memory m' > m to make a bigger profit than was initially possible. We suggest ours as a framework to rationalize the technological arms race of quantitative trading firms.
The National Transportation Safety Board A Model for Systemic Risk Management
2011We propose the National Transportation Safety Board (NTSB) as a model organization for addressing systemic risk in industries and contexts other than transportation. When adopted by regulatory agencies and the transportation industry, the safety recommendations of the NTSB have been remarkably effective in reducing the number of fatalities in various modes of transportation since the NTSB’s inception in 1967 as an independent agency. The NTSB has no regulatory authority and is solely focused on conducting forensic investigations of transportation accidents and proposing safety recommendations. With only 400 full-time employees, the NTSB has a much larger network of experts drawn from other government agencies and the private sector who are on call to assist in accident investigations on an as-needed basis. By allowing the participation in its investigations of all interested parties who can provide technical assistance to the investigations, the NTSB produces definitive analyses of even the most complex accidents and provides actionable measures for reducing the chances of future accidents. It is possible to create more efficient and effective systemic-risk management processes in many other industries, including financial services, by studying the organizational structure and functions of the NTSB.
What Happened To The Quants In August 2007?: Evidence from Factors and Transactions Data
2011During the week of August 6, 2007, a number of quantitative long/short equity hedge funds experienced unprecedented losses. It has been hypothesized that a coordinated deleveraging of similarly constructed portfolios caused this temporary dislocation in the market. Using the simulated returns of long/short equity portfolios based on five specific valuation factors, we find evidence that the unwinding of these portfolios began in July 2007 and continued until the end of 2007. Using transactions data, we find that the simulated returns of a simple market-making strategy were significantly negative during the week of August 6, 2007, but positive before and after, suggesting that the Quant Meltdown of August 2007 was the combined effects of portfolio deleveraging throughout July and the first week of August, and a temporary withdrawal of market-making risk capital starting August 8th. Our simulations point to two unwinds—a mini-unwind on August 1st starting at 10:45am and ending at 11:30am, and a more sustained unwind starting at the open on August 6th and ending at 1:00pm—that began with stocks in the financial sector and long Book-to-Market and short Earnings Momentum. These conjectures have significant implications for the systemic risks posed by the hedge-fund industry.
The Origin of Behavior
2011We propose a single evolutionary explanation for the origin of several behaviors that have been observed in organisms ranging from ants to human subjects, including risk-sensitive foraging, risk aversion, loss aversion, probability matching, randomization, and diversification. Given an initial population of individuals, each assigned a purely arbitrary behavior with respect to a binary choice problem, and assuming that offspring behave identically to their parents, only those behaviors linked to reproductive success will survive, and less reproductively successful behaviors will disappear at exponential rates. This framework generates a surprisingly rich set of behaviors, and the simplicity and generality of our model suggest that these behaviors are primitive and universal.
Illiquidity Premia in Asset Returns: An Empirical Analysis of Hedge Funds, Mutual Funds, and US Equity Portfolios
2011We establish a link between illiquidity and positive autocorrelation in asset returns among a sample of hedge funds, mutual funds, and various equity portfolios. For hedge funds, this link can be confirmed by comparing the return autocorrelations of funds with shorter vs. longer redemption-notice periods. We also document significant positive return-autocorrelation in portfolios of securities that are generally considered less liquid, e.g., small-cap stocks, corporate bonds, mortgage-backed securities, and emerging-market investments. Using a sample of 2,927 hedge funds, 15,654 mutual funds, and 100 size- and book-to-market-sorted portfolios of U.S. common stocks, we construct autocorrelation-sorted long/short portfolios and conclude that illiquidity premia are generally positive and significant, ranging from 2.74% to 9.91% per year among the various hedge funds and fixed-income mutual funds. We do not find evidence for this premium among equity and asset-allocation mutual funds, or among the 100 U.S. equity portfolios. The time variation in our aggregated illiquidity premium shows that while 1998 was a difficult year for most funds with large illiquidity exposure, the following four years yielded significantly higher illiquidity premia that led to greater competition in credit markets, contributing to much lower illiquidity premia in the years leading up to the Financial Crisis of 2007–2008.
Securities Trading of Concepts (STOC)
2011Identifying winning new product concepts can be a challenging process that requires insight into private consumer preferences. To measure consumer preferences for new product concepts, the authors apply a 'securities of trading of concepts,' or STOC, approach, in which new product concepts are traded as financial securities. The authors apply this method because market prices are known to efficiently collect and aggregate private information regarding the economic value of goods, sevices, and firms, particularly when trading financial securities. This research compares the STOC approach against stated-choice, conjoint, constant-sum, and longitudinal revealed-preference data. The authors also place STOC in the context of previous research on prediction markets and experimental economics. The authors conduct a series of experiments in multiple product categories to test whether STOC (1) is more cost efficient than other methods, (2) passes validity tests, (3) measures expectations of others, and (4) reveals individual preferences, not just those of the crowd. The results also show that traders exhibit bias on the basis of self-preferences when trading. Ultimately, STOC offers two key advantages over traditional market research methods: cost efficiency and scalability. For new product development teams deciding how to invest resources, this scalability may be especially important in the Web 2.0 world, in which customers are constantly interacting with firms and one another in suggesting numerous product design possibilities that need to be screened.
Complexity, Concentration and Contagion: A Comment
2011Although the precise origins of the term "complex adaptive system" are unclear, nevertheless, the hackneyed phrase is now firmly ensconced in the lexicon of biologists, physicists, mathematicians, and, most recently, economics. However, as with many important ideas that become cliches, the original meaning is often obscured and diluted by popular usage. But thanks to the fascinating article by Gai, Haldane, and Kapadia, we have a concrete and practical instantiation of a complex adaptive system in economics, one that has real relevance to current policy debates regarding financial reform. Since there is very little to criticize in their compelling article, I will seek to amplify their results and place them in a broader context in my comments.
Hedge Funds: An Analytic Perspective
2010 Revised EditionThe hedge fund industry has grown dramatically over the last two decades, with more than eight thousand funds now controlling close to two trillion dollars. Originally intended for the wealthy, these private investments have now attracted a much broader following that includes pension funds and retail investors. Because hedge funds are largely unregulated and shrouded in secrecy, they have developed a mystique and allure that can beguile even the most experienced investor. In Hedge Funds, Andrew Lo--one of the world's most respected financial economists--addresses the pressing need for a systematic framework for managing hedge fund investments.
The Evolution of Technical Analysis
2010"A movement is over when the news is out," so goes the Wall Street maxim. For thousands of years, technical analysis—marred with common misconceptions likening it to gambling or magic and dismissed by many as "voodoo finance"—has sought methods for spotting trends in what the market's done and what it's going to do. After all, if you don't learn from history, how can you profit from it?
In The Evolution of Technical Analysis, the director of MIT's Laboratory for Financial Engineering, Andrew Lo, and coauthor Jasmina Hasanhodzic present an engaging account of the origins and development of this mysterious "black art," tracing its evolution from ancient Babylon to the rise of Wall Street as the world's financial center. Along the way, the practices of Eastern technical analysts like Munehisa Homma ("the god of the markets") are compared and contrasted with those of their Western counterparts, such as Humphrey Neill, William Gann, and Charles Dow ("the father of technical analysis").
With deep roots in antiquity, technical analysis is part art and part science, seeking to divine trends, reversals, cycles, and other predictable patterns in historical market prices. While the techniques for capturing such regularities have evolved considerably over the centuries, the all-too-human predilection to extrapolate into the future using the past has been a constant driving force throughout history.
The authors chronicle the fascinating and unexpected path of charting that likely began with simple superstitions and coincidences, and has developed into widespread practices in many markets and instruments, involving sophisticated computational algorithms and visualization techniques. The Evolution of Technical Analysis is the story of how some early technicians failed miserably, how others succeeded beyond their wildest dreams, and what it means for traders today.
Stock Market Trading Volume
2010If price and quantity are the fundamental building blocks of any theory of market interactions, the importance of trading volume in understanding the behavior of financial markets is clear. However, while many economic models of financial markets have been developed to explain the behavior of prices – predictability, variability, and information content – far less attention has been devoted to explaining the behavior of trading volume. In this chapter, we hope to expand our understanding of trading volume by developing well-articulated economic models of asset prices and volume and empirically estimating them using recently available daily volume data for individual securities from the University of Chicago’s Center for Research in Securities Prices. Our theoretical contributions include (1) an economic definition of volume that is most consistent with theoretical models of trading activity; (2) the derivation of volume implications of basic portfolio theory; and (3) the development of an intertemporal equilibrium model of asset market in which the trading process is determined endogenously by liquidity needs and risk-sharing motives. Our empirical contributions include (1) the construction of a volume/returns database extract of the CRSP volume data; (2) comprehensive exploratory data analysis of both the time-series and cross-sectional properties of trading volume; (3) estimation and inference for price/volume relations implied by asset pricing models; and (4) a new approach for empirically identifying factors to be included in a linear factor model of asset returns using volume data.
The Financial Industry Needs its Own Crash Safety Board
2010MIT Sloan Prof. Andrew Lo authored this opinion piece supporting the creation of a “Capital Markets Safety Board’ (CMSB) patterned after the National Transportation Safety Board, dedicated to investigating, reporting, and archiving the ‘accidents’ of the financial industry.”
Lo: The Best Econ Book I’ve Read Recently
2010Andrew Lo, director of the MIT Laboratory for Financial Engineering, posted his commentary on a recent economics book in this online Q&A.
WARNING: Physics Envy May Be Hazardous To Your Wealth
2010The quantitative aspirations of economists and financial analysts have for many years been based on the belief that it should be possible to build models of economic systems—and financial markets in particular—that are as predictive as those in physics. While this perspective has led to a number of important breakthroughs in economics, "physics envy" has also created a false sense of mathematical precision in some cases. We speculate on the origins of physics envy, and then describe an alternate perspective of economic behavior based on a new taxonomy of uncertainty. We illustrated the relevance of this taxonomy with two concrete examples: the classical harmonic oscillator with some new twists that make physics look more like economics, and a quantitative equity market-neutral strategy. We conclude by offering a new interpretation of tail events, proposing an 'uncertainty checklist' with which our taxonomy can be implemented, and considering the role that quants played in the current financial crisis.