Publications
Identifying and Mitigating Potential Biases in Predicting Drug Approvals
2022INTRODUCTION: Machine learning models are increasingly applied to predict the drug development outcomes based on intermediary clinical trial results. A key challenge to this task is to address various forms of bias in the historical drug approval data.
OBJECTIVE:We aimed to identify and mitigate the bias in drug approval predictions and quantify the impacts of debiasing in terms of financial value and drug safety.
METHODS: We instantiated the Debiasing Variational Autoencoder, the state-of-the-art model for automated debiasing. We trained and evaluated the model on the Citeline dataset provided by Informa Pharma Intelligence to predict the final drug development outcome from phase II trial results.
RESULTS: The debiased Debiasing Variational Autoencoder model achieved better performance (measured by the F1 score 0.48) in predicting the drug development outcomes than its un-debiased baseline (measured by the F1 score 0.25). It had a much higher true-positive rate than baseline (60% vs 15%), while its true-negative rate was slightly lower (88% vs 99%). The Debiasing Variational Autoencoder distinguished between drugs developed by large pharmaceutical firms and those by small biotech companies. The model prediction is strongly influenced by multiple factors such as prior approval of the drug for another indication, whether the trial meets the positive/negative endpoints, and the year when the trial is completed. We estimate that the debiased model generates financial value for the drug developer in six major therapeutic areas, with a range of US$763–1,365 million.
CONCLUSIONS: Our analysis shows that debiasing improves the financial efficiency of late-stage drug development. From the pharmacovigilance perspective, the debiased model is more likely to identify drugs that are both safe and effective. Meanwhile, it may predict a higher probability of success for drugs with potential adverse effects (because of its lower true-negative rate), thus it must be used with caution to predict the development outcomes of drug candidates currently in the pipeline.
Estimates of Probabilities of Successful Development of Pain Medications: An Analysis of Pharmaceutical Clinical Development Programs from 2000 to 2020
2022BACKGROUND: The authors estimate the probability of successful development and duration of clinical trials for medications to treat neuropathic and nociceptive pain. The authors also consider the effect of the perceived abuse potential of the medication on these variables.
METHODS: This study uses the Citeline database to compute the probabilities of success, duration, and survivorship of pain medication development programs between January 1, 2000, and June 30, 2020, conditioned on the phase, type of pain (nociceptive vs. neuropathic), and the abuse potential of the medication.
RESULTS: The overall probability of successful development of all pain medications from phase 1 to approval is 10.4% (standard error, 1.5%).Medications to treat nociceptive and neuropathic pain have a probability of successful development of 13.3% (standard error, 2.3%) and 7.1% (standard error, 1.9%), respectively. The probability of successful development of medications with high abuse potential and low abuse potential are 27.8% (standard error, 4.6%) and 4.7% (standard error, 1.2%), respectively. The most common period for attrition is between phase 3 and approval.
CONCLUSIONS: The authors’ data suggest that the unique attributes of pain medications, such as their abuse potential and intended pathology, can influence the probability of successful development and duration of development.
Financing pharmaceuticals and medical devices for pain treatment and opioid use disorder
2022The opioid epidemic in the U.S. has resulted in significant costs in human lives as well as to the health care system, employers, and insurers. While there is great motivation and urgency to address the opioid crisis, there are currently few non-opioid pain management medications in the development pipeline. The growing regulatory pressures and stigma surrounding opioids have discouraged investments and research in the pain industry. Using estimates from the literature, our simulations show that a portfolio of pharmaceuticals and medical devices for pain treatment and opioid use disorder, diversified and optimized across different development pathways, yields single digit annualized returns. This suggests that active collaboration between the public and private sectors is needed to incentivize investments in pain research.
Measuring the Economic and Academic Impact of Philanthropic Funding: The Breast Cancer Research Foundation
2022Using survey data gathered from grantees of the nonprofit Breast Cancer Research Foundation (BCRF), we investigated the commercial and non-commercial impacts of their research funding. We found significant impact in both domains. Commercially, 19.5% of BCRF grantees filed patents, 35.9% had a project that has reached clinical development, and 12 companies have or will be spun off from existing projects, thus creating 127 new jobs. Non-commercially, 441 graduate students have been trained by 116 grantees, 767 postdoctoral fellows have been trained by 137 grantees, 66% of grantees have used funding for faculty salaries, 93% have achieved collaboration with other researchers, and 42.7% have enacted process improvements in research methodology. Econometric analysis identifies BCRF funding and associated process improvements as key factors associated with the likelihood to file patents. However, we also found that the involvement of more than one institution in a collaborative project had a negative impact on subsequent development. This may point to frictions introduced by multi-university interactions.
Financing Biomedical Innovation
2022We review the recent literature on financing biomedical innovation, with a specific focus on the drug development process and how it may be enhanced to improve outcomes. We begin by laying out stylized facts about the structure of the drug development process and its associated costs and risks, and we present evidence that the rate of discovery for life-saving treatments has declined over time while costs have increased. We make the argument that these structural features require drug development (i.e., biopharmaceutical) firms to rely on external financing and at the same time amplify market frictions that may hinder the ability of these firms to obtain financing, especially for treatments that may have large societal value relative to the benefits going to the firms and their investors. We then provide an overview of the evidence for various types of market frictions to which these drug development firms are exposed and discuss how these frictions affect their incentive to invest in the development of new drugs, leading to underinvestment in valuable treatments. In light of this evidence, numerous studies have proposed ways to overcome this funding gap, including the use of financial innovation. We discuss the potential of these approaches to improve outcomes.
Should We Allocate More COVID-19 Vaccine Doses to Non-vaccinated Individuals?
2022Following the approval by the FDA of two COVID-19 vaccines, which are administered in two doses three to four weeks apart, we simulate the effects of various vaccine distribution policies on the cumulative number of infections and deaths in the United States in the presence of shocks to the supply of vaccines. Our forecasts suggest that allocating more than 50% of available doses to individuals who have not received their first dose can significantly increase the number of lives saved and significantly reduce the number of COVID-19 infections. We find that a 50% allocation saves on average 33% more lives, and prevents on average 32% more infections relative to a policy that guarantees a second dose within the recommended time frame to all individuals who have already received their first dose. In fact, in the presence of supply shocks, we find that the former policy would save on average 8,793 lives and prevents on average 607,100 infections while the latter policy would save on average 6,609 lives and prevents on average 460,743 infections.
Debiasing Probability of Success Estimates for Clinical Trials
2022Due to the “boundary effect” bias, PoS estimates in the most recent years are inflated. To address this issue, we compute a bias-adjustment factor using historical data and multiply the PoS in recent years by this factor.
The reaction of sponsor stock prices to clinical trial outcomes: An event study analysis
2022We perform an event study analysis that quantifies the market reaction to clinical trial result announcements for 13,807 trials from 2000 to 2020, one of the largest event studies of clinical trials to date. We first determine the specific dates in the clinical trial process on which the greatest impact on the stock prices of their sponsor companies occur. We then analyze the relationship between the abnormal returns observed on these dates due to the clinical trial outcome and the properties of the trial, such as its phase, target accrual, design category, and disease and sponsor company type (biotechnology or pharmaceutical). We find that the classification of a company as “early biotechnology” or “big pharmaceutical” had the most impact on abnormal returns, followed by properties such as disease, outcome, the phase of the clinical trial, and target accrual. We also find that these properties and classifications by themselves were insufficient to explain the variation in excess returns observed due to clinical trial outcomes.
Multimorbidity and mortality: A data science perspective
2022BACKGROUND: With multimorbidity becoming the norm rather than the exception, the management of multiple chronic diseases is a major challenge facing healthcare systems worldwide.
METHODS: Using a large, nationally representative database of electronic medical records from the United Kingdom spanning the years 2005–2016 and consisting over 4.5 million patients, we apply statistical methods and network analysis to identify comorbid pairs and triads of diseases and identify clusters of chronic conditions across different demographic groups. Unlike many previous studies, which generally adopt cross-sectional designs based on single snapshots of closed cohorts, we adopt a longitudinal approach to examine temporal changes in the patterns of multimorbidity. In addition, we perform survival analysis to examine the impact of multimorbidity on mortality.
RESULTS: The proportion of the population with multimorbidity has increased by approximately 2.5 percentage points over the last decade, with more than 17% having at least two chronic morbidities. We find that the prevalence and the severity of multimorbidity, as quantified by the number of co-occurring chronic conditions, increase progressively with age. Stratifying by socioeconomic status, we find that people living in more deprived areas are more likely to be multimorbid compared to those living in more affluent areas at all ages. The same trend holds consistently for all years in our data. In general, hypertension, diabetes, and respiratory-related diseases demonstrate high in-degree centrality and eigencentrality, while cardiac disorders show high out-degree centrality.
CONCLUSIONS: We use data-driven methods to characterize multimorbidity patterns in different demographic groups and their evolution over the past decade. In addition to a number of strongly associated comorbid pairs (e.g., cardiac-vascular and cardiac-metabolic disorders), we identify three principal clusters: a respiratory cluster, a cardiovascular cluster, and a mixed cardiovascular-renal-metabolic cluster. These are supported by established pathophysiological mechanisms and shared risk factors, and largely confirm and expand on the results of existing studies in the medical literature. Our findings contribute to a more quantitative understanding of the epidemiology of multimorbidity, an important pre-requisite for developing more effective medical care and policy for multimorbid patients.
Differentiated Dollars
2022Disease-focused foundations have used venture philanthropy (VP) for decades to develop interventions that have patient impact and generate revenue to support their mission. We articulate the distinguishing motives and features of VP funds and their distinct role in the life sciences innovation ecosystem. In particular, we focus on how entrepreneurs and VP funds can work together to help patients and generate economic value. We recommend that entrepreneurs seeking VP support understand a fund’s mission and objectives, and position themselves to fit the fund’s strategic and financial portfolio needs. Finally, we provide case studies of three specific initiatives — the JDRF T1D Fund, targeting type 1 (juvenile) diabetes; MPM Capital’s Oncology Impact Fund; and the American Heart Association’s Cardeation Capital — to showcase these efforts and benefits in practice.
Financing Alzheimer’s Disease Drug Development
2022Alzheimer’s disease (AD) is one of the biggest challenges to modern medicine. However, before February 2021, the last AD drug approval occurred in 2003, implying a 100% failure rate of AD therapeutic programs over the 17 years to that point; the lowest probability of success among all diseases. One of the key challenges is funding, which we explore in more depth in this chapter by first reviewing the current funding landscape for AD, and then considering the strengths and weaknesses of various commercialization strategies. Despite the discouraging track record of the biopharma industry in addressing AD, there is reason to be hopeful due to substantial scientific progress in developing a deeper understanding of the biology of the disease as well as increased federal funding for AD research. However, we also we need the private sector to translate these scientific breakthroughs into new medicines, which takes additional funding and new business models so as to reduce risk and improve returns for investors. If we can change the narrative of AD therapeutics to give investors new hope, the private sector can serve as a powerful partner to the biomedical community.
Sharing R&D Risk in Healthcare via FDA Hedges
2022Biomedical innovation suffers from a “funding gap” between the needs of drug development firms and the availability of funds. The requirement of large investments for drug development projects and the high pipeline risk associated with FDA approval causes this funding gap in part. In this paper, we propose a new financial instrument—the “FDA hedge”—that pays off upon FDA approval failure. We develop a theory to show that the FDA hedge can help eliminate the funding gap. Using novel project-level data, we establish empirically that FDA hedge risk is idiosyncratic, and show how better sharing this risk can spur welfare-enhancing R&D.
Competition and R&D Financing: Evidence from the Biopharmaceutical Industry
2022The interaction between product market competition, R&D investment, and the financing choices of R&D-intensive firms on the development of innovative products is only partially understood. We hypothesize that as competition increases, R&D-intensive firms will: i) increase R&D investment relative to existing assets in place; ii) carry more cash; and iii) maintain less net debt. Using the Hatch–Waxman Act as an exogenous shock to competition, we provide causal evidence supporting these hypotheses through a differences-in-differences analysis that exploits differences between the biopharma industry and other industries, and heterogeneity within the biopharma industry. We also explore how these changes affect innovative output.
Financing Vaccines for Global Health Security
2022Recent outbreaks of infectious pathogens such as Zika, Ebola, and COVID-19 have under-scored the need for the dependable availability of vaccines against emerging infectious diseases (EIDs). Prior to the COVID-19 pandemic, the cost and risk of R&D programs and uniquely unpredictable demand for EID vaccines discouraged many potential vaccine developers, and government and nonprofit agencies have struggled to provide timely or sufficient incentives for their development and sustained supply. However, the economic climate has changed significantly post-pandemic. To explore this contrast, we analyze the pre-pandemic economic returns of a portfolio of EID vaccine assets, and find that, under realistic financing assumptions, the expected returns are significantly negative, implying that the private sector is unlikely to address this need without public-sector intervention. However, in a post-pandemic policy landscape, the financing deficit for this portfolio can be closed, and we analyze several potential solutions, including enhanced public–private partnerships and subscription models in which governments would pay annual fees to obtain access to a portfolio of stockpiled vaccines in the event of an outbreak.
A Brainier Approach to ESG Investing
2021Brains are the indispensable drivers of human progress, but brain health issues can wreak havoc on society. Consider the devastation of disorders like depression, anxiety, and Alzheimer disease—which cost the economy trillions each year. There are currently $40.5 trillion allocated to Environment, Sustainability, and Governance (ESG) investing around the world. If only a portion of these funds were diverted into brain health, they could produce major improvements for our society.