Publications
Personal Indexes
2001Artificial intelligence has transformed financial technology in many ways and in this review article, three of the most promising applications are discussed: neural networks, data mining, and pattern recognition. Just as indexes are meant to facilitate the summary and extraction of information in an efficient manner, sophisticated automated algorithms can now perform similar functions but at higher and more powerful levels. In some cases, artificial intelligence can save us from natural stupidity.
Computational Challenges in Portfolio Management
2001The financial industry is one of the fastest-growing areas of scientific computing. Two decades ago, terms such as financial engineering, computational finance, and financial mathematics did not exist in common usage. Today, these areas are distinct and enormously popular academic disciplines with their own journals, conferences, and professional societies. One explanation for this area’s remarkable growth and the impressive array of mathematicians, computer scientists, physicists, and economists that are drawn to it is the formidable intellectual challenges intrinsic to financial markets. Many of the most basic problems in financial analysis are unsolved and surprisingly resilient to the onslaught of researchers from diverse disciplines. In this article, we hope to give a sense of these challenges by describing a relatively simple problem that all investors face when managing a portfolio of financial securities over time. Such a problem becomes more complex once real-world considerations factor into its formulation. We present the basic dynamic portfolio optimization problem and then consider three aspects of it: taxes, investor preferences, and portfolio constraints. These three issues are by no means exhaustive—they merely illustrate examples of the kinds of challenges financial engineers face today. Examples of other computational issues in portfolio optimization appear elsewhere.
Finance: A Selective Survey
2001Ever since the publication in 1565 of Girolamo Cardano's treatise on gambling, Liber de Ludo Aleae (The Book of Games of Chance), statistics and financial markets have become inextricably linked. Over the past few decades many of these links have become part of the canon of modern finance, and it is now impossible to fully appreciate the workings of financial markets without them. This selective survey covers three of the most important ideas of finance—efficient markets, the random walk hypothesis, and derivative pricing models—that illustrate the enormous research opportunities that lie at the intersection of finance and statistics.
Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation
2000Technical analysis, also known as "charting,'' has been a part of financial practice for many decades, but this discipline has not received the same level of academic scrutiny and acceptance as more traditional approaches such as fundamental analysis. One of the main obstacles is the highly subjective nature of technical analysis—the presence of geometric shapes in historical price charts is often in the eyes of the beholder. In this paper, we propose a systematic and automatic approach to technical pattern recognition using nonparametric kernel regression, and apply this method to a large number of U.S. stocks from 1962 to 1996 to evaluate the effectiveness of technical analysis. By comparing the unconditional empirical distribution of daily stock returns to the conditional distribution—conditioned on specific technical indicators such as head-and-shoulders or double-bottoms—we find that over the 31-year sample period, several technical indicators do provide incremental information and may have some practical value.
Data-Snooping Biases in Financial Analysis
1994Data-snooping—finding seemingly significant but in fact spurious patterns in the data—is a serious problem in financial analysis. Although it afflicts all non-experimental sciences, data-snooping is particularly problematic for financial analysis because of the large number of empirical studies performed on the same datasets. Given enough time, enough attempts, and enough imagination, almost any pattern can be teased out of any dataset. In some cases, these spurious patterns are statistically small, almost unnoticeable in isolation. But because small effects in financial calculations can often lead to very large differences in investment performance, data-snooping biases can be surprisingly substantial. In this review article, I provide several examples of data-snooping biases, explain why it is impossible to eliminate them completely, and propose several ways to guard against the most extreme forms of data-snooping in financial analysis.
Neural Networks and Other Nonparametric Techniques in Economics and Finance
1994Although they are only one of the many types of statistical tools for modeling nonlinear relationships, neural networks seem to be surrounded by a great deal of mystique and, sometimes, misunderstanding. Because they have their roots in neurophysiology and the cognitive sciences, neural networks are often assumed to have brain-like qualities: learning capacity, problem-solving abilities, and ultimately, cognition and self-awareness. Alternatively, neural networks are often viewed as "black boxes" that can yield accurate predictions with little modeling effort. In this review paper, I hope to remove some of the mystique and misunderstandings about neural networks by providing some simple examples of what they are, what they can and cannot do, and where neural nets might be profitably applied in financial contexts.
Data Snooping Biases in Tests of Financial Asset Pricing Models
1990Tests of financial asset pricing models may yield misleading inferences when properties of the data are used to construct the test statistics. In particular, such tests are often based on returns to portfolios of common stock, where portfolios are constructed by sorting some empirically motivated characteristic of the securities such as market value of equity. Analytical calculations, Monte Carlo simulations, and two empirical examples show the effects of this type of data snooping can be substantial.