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1. Introduction

One of the most influential ideas in all the social sciences is the Efficient
Markets Hypothesis of Samuelson (1965) and Fama (1970), the notion that
market prices “fully reflect all available information.” This disarmingly sim-
ple but profound theory has been an object of intense study and debate,
launching literally thousands of empirical investigations of its many specific
implications for human behavior. These implications have been confirmed so
often across so many contexts that Jensen (1978) concluded that “there is
no other proposition in economics which has more solid empirical evidence
supporting it than the Efficient Market Hypothesis.”

However, in recent years, accumulating evidence from psychology, behav-
ioral economics and finance, the cognitive neurosciences, and biology has
highlighted significant and abiding inconsistencies between Homo economi-
cus and Homo sapiens.1 These inconsistencies have called into question the
predicates of expected utility theory, rational expectations, equilibrium, and
even the Law of One Price, which are the very foundations of efficient mar-
kets, and much of the rest of neoclassical economics and finance. The Finan-
cial Crisis of 2007–2009 has only added more fuel to the many fires now
threatening the efficient markets edifice.

The juxtaposition of compelling empirical evidence in support of mar-
ket efficiency with equally compelling empirical and experimental evidence
of apparent irrationality and behavioral anomalies suggests that human
behavior may not be solely determined by economic considerations, but
is, instead, the amalgam of multiple decision-making faculties—including
instinct, emotion, and logic—that yield observed actions. And because
the relative importance of these faculties varies across time and circum-
stances, even for a given individual, it is no wonder that despite centuries
of intense analysis and debate, there is still remarkably little consensus
among economists, psychologists, and biologists as to how to model human
behavior.

In this paper, we propose an evolutionary explanation for the origin of
behavior that is simple enough to solve analytically, but general enough to
explain commonly observed behaviors in animal species ranging from ants to
human subjects. Specifically, we show that risk aversion, risk-sensitive for-
aging, loss aversion, probability matching, and more general and previously

1See, for example, Kahneman et al. (1982) and Thaler (1993).

Q
ua

rt
. J

. o
f 

Fi
n.

 2
01

1.
01

:5
5-

10
8.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
A

SS
A

C
H

U
SE

T
T

S 
IN

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 (

M
IT

) 
on

 0
5/

01
/2

0.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 15, 2011 18:20 WSPC/S2010-1392 271-QJF S201013921100002X.tex

The Origin of Behavior • 57

inexplicable forms of randomizing behavior can all be derived from evolu-
tionary forces acting on an arbitrary set of behaviors over an extended period
of time.

Some of these behaviors have been the subject of significant controversy,
and these so-called “behavioral biases” are especially pronounced when ele-
ments of risk and probability are involved. Two of the most ubiquitous
biases are loss aversion (Tversky and Kahneman, 1974; Kahneman and
Tversky, 1979)—the tendency to take greater risk when choosing between
two potential losses, and less risk when choosing between two potential
gains—and probability matching, also known as the “matching law” or
“Herrnstein’s Law” (Grant et al., 1951; Hake and Hyman, 1953; Herrn-
stein, 1997; Vulcan, 2000)—the tendency to choose randomly between heads
and tails when asked to guess the outcomes of a series of biased-coin tosses,
where the randomization matches the probability of the biased coin. The
idea of randomizing behavior is especially difficult to reconcile with the
standard economic paradigm of expected utility theory in which individual
behavior is nonstochastic and completely determined by utility functions,
budget constraints, and the probability laws governing the environment.
Both types of biases clearly imply irrationality, i.e., individually sub-optimal
choices, yet these behaviors have been observed in thousands of geographi-
cally diverse human subjects over several decades, as well as in other animal
species.

Our model consists of an initial population of individuals (not necessarily
human) that live for one period of unspecified length and engage in a single
binary decision that has implications for the random number of offspring
they will generate. To the extent that their behavior is linked to fecundity,
only the most reproductively successful behaviors will flourish due to the
forces of natural selection. Although obvious from an evolutionary biologist’s
perspective, this observation yields surprisingly specific implications for the
types of behavior that are sustainable over time, behaviors that are likely
to be innate to most living organisms.

A simple numerical example of one of our results will illustrate our
approach. Consider a population of individuals, each facing a binary choice
between one of two possible actions, a and b. For 60% of the time, environ-
mental conditions are positive, and action a leads to reproductive success,
generating 3 offspring for the individual. For 40% of the time, environmental
conditions are negative, and action a leads to 0 offspring. Suppose action
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b has exactly the opposite outcomes—whenever a yields 3 offspring, b yields
0, and whenever a yields 0, b yields 3. From the individual’s perspective,
always choosing a, which has the higher probability of reproductive success,
will lead to more offspring on average. However, if all individuals in the
population behaved in this “rational” manner, the first time that a negative
environmental condition occurs, the entire population will become extinct.
Assuming that offspring behave identically to their parents, the behavior
“always choose a” cannot survive over time. For the same reason, “always
choose b” is also unsustainable. In fact, we show below that in this special
case, the behavior with the highest reproductive success over time is for each
individual to choose a 60% of the time and b 40% of the time, matching the
probabilities of reproductive success and failure. Eventually, this behavior
will dominate the entire population.

Probability matching has long puzzled economists and psychologists
because of its apparent inconsistency with basic self-interest.2 However,
probability matching is perfectly consistent with evolution, arising purely
from the forces of natural selection and population growth. Moreover, for
more general environmental conditions, i.e., more general assumptions for
reproductive success, we derive more general types of behavior that involve
randomization but not necessarily probability matching. These results may
explain the inconsistency with which such behavior is observed: whether or
not randomizing behavior matches environmental probabilities depends on
the relative reproductive success of the outcomes, and our framework yields
a simple and specific condition for such behavior. Our results do not depend
on how individuals arrive at their choices, whether they learn over time, or
whether individuals possess a theory of mind or a self-awareness of the con-
sequences of their actions. In fact, our results do not even require individuals
to possess central nervous systems.

We also show that the concepts of risk aversion and risk-sensitive forag-
ing behavior emerge from the same framework. Because populations grow
geometrically, a sequence of 50/50 gambles yielding 2 or 4 offspring each
generation will yield a slower average growth rate than sure bets of 3 off-
spring (the product of 2 and 4 is smaller than the product of 3 and 3). While

2One of the earliest papers to document this phenomenon is Grant et al. (1951), and
as recently as 2007, Kogler and Kühberger (2007) report that “Experimental research
in simple repeated risky choices shows a striking violation of rational choice theory: the
tendency to match probabilities by allocating the frequency of response in proportion to
their relative probabilities.”
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this principle of “geometric mean fitness” is well known among population
biologists, its implications for risk-bearing activity in economic settings have
not been fully explored. For example, the fact that the preferences most likely
to survive over time are those that require a higher expected fecundity in
return for taking risk implies the existence of a positive evolutionary “risk
premium,” which we are able to derive explicitly and quantify as a function
of environmental conditions.

Our model also generates asymmetric risk preferences for gains and
losses, i.e., loss aversion, resolving a longstanding debate among disciples of
von Neumann and Morgenstern expected-utility theory (von Neumann and
Morgenstern, 1944; Schoemaker, 1982) and proponents of behavioral alter-
natives such as prospect theory (Kahneman and Tversky, 1979; Tversky and
Kahneman, 1981). Each perspective is capturing somewhat different aspects
of the same behavior shaped by natural selection and population growth.
Moreover, our framework provides an explanation for the apparent variabil-
ity in the experimental evidence regarding loss aversion and the nature of the
“reference point” that demarcates risk-seeking and risk-averse behavior: evo-
lution shapes an individual’s decision-making mechanism or preferences to
enhance reproductive success which, in turn, is determined by total wealth,
not incremental wealth. Accordingly, two individuals with the same decision-
making process but different levels of net worth may behave differently when
offered the same incremental prospects.

Finally, and perhaps most significantly, our framework illustrates the
role of the environment in shaping behavior and why certain populations
appear to exhibit irrational behavior while others do not. The difference can
be traced to a single feature of the environment’s impact on individual biol-
ogy: systematic versus idiosyncratic sources of randomness in reproduction.
In populations where environmental factors are largely systematic, i.e., they
affect the reproduction rates of all individuals in the same manner, any form
of synchronization in behavior may lead to extinction, hence such synchrony
is unlikely to be perpetuated. In other words, if environmental risks are sys-
tematic, survival depends on the population diversifying its behavior so that
some fraction will survive to reproduce no matter what the environment is
like. In such cases, it may seem as if certain individuals are acting irrationally
since they may not be behaving optimally for a given environment. But such
heterogeneous behavior is, in fact, optimal from the perspective of the pop-
ulation. If, on the other hand, environmental risks are largely idiosyncratic,
then individuals engaging in identical behavior, e.g., individually optimal
behavior, will not expose the population to extinction. Moreover, in this
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case, natural selection will favor the individually optimal behavior; hence, a
population of individually rational individuals will emerge. Thus, rationality
is not necessarily in the eyes of the individual beholder but is sometimes in
the hands of systematic environmental factors.

In Section 2 we provide a review of the literature, and in Section 3, we
present our binary choice framework. Using this framework, in Section 4, we
derive necessary and sufficient conditions under which probability matching
emerges and also show how probability matching breaks down under dif-
ferent environments. By making one of the two binary choices riskless, in
Section 5, we show how risk preferences evolve, derive an evolutionary equity
risk premium, and show how loss aversion arises naturally from these pref-
erences. In Section 6, we develop the implications of systematic and idiosyn-
cratic risk for behavior, and show that the former yields populations in which
individuals do not always act rationally, but not the latter. We propose sev-
eral extensions of our binary choice framework in Section 7 and conclude in
Section 8.

2. Literature Review

The literature on evolution and behavior is overwhelming, spanning the dis-
ciplines of evolutionary biology, ecology, evolutionary and social psychology,
and economics, with myriad branches of relevant citations within each of
these broad fields. While a comprehensive survey is well beyond the scope of
this section, we attempt to provide a representative sampling of the many
related strands of this vast body of research.

Evolutionary principles are now routinely used to derive implications for
animal behavior. While each species may have developed unique responses
for addressing particular environmental challenges, the most critical of these
have been shaped by the forces of mutation, competition, and natural selec-
tion. Although such forces operate at the genetic level, as described so com-
pellingly by Dawkins (1976), the pathbreaking work of Hamilton (1964);
Trivers (1971; 1985; 2002), Wilson (1975), and Maynard Smith (1982; 1984)
show that evolutionary mechanisms may also explain a variety of counter-
intuitive behaviors including altruism, cooperation, kin selection, reciprocity,
and other social customs. More recently, the field of evolutionary psychology
(Cosmides and Tooby, 1994; Barkow et al., 1992; Tooby and Cosmides, 1995;
Pinker, 1979; 1991; 1994; Gigerenzer, 2000; Buss, 2004; Ehrlich and Levin,
2005) has expanded the reach of evolution to even broader domains such as
language, culture, and religion.
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Evolutionary ideas have also played an important role in economics.
Malthus (1826) used a simple biological argument—the fact that populations
increase at geometric rates, whereas natural resources increase at only arith-
metic rates (at least in the 19th century)—to arrive at the dire economic
consequences that earned the field the moniker “dismal science.” Both Dar-
win and Wallace were aware of and apparently influenced by these argu-
ments (see Hirshleifer, 1977, for further details). Also, Schumpeter’s (1939)
view of business cycles, entrepreneurs, and capitalism has an unmistake-
able evolutionary flavor to it; in fact, his ideas of “creative destruction”
and “bursts” of entrepreneurial activity bear a striking resemblance to
natural selection and Eldredge and Gould’s (1972) notion of “punctuated
equilibrium.”

More recently, economists and biologists have begun to explore these
connections in several veins: economic extensions of sociobiology (Becker,
1976; Hirshleifer, 1977); evolutionary game theory (Maynard Smith, 1982;
1984; Weibull, 1995); an evolutionary interpretation of economic change
(Nelson and Winter, 1982); economies as complex adaptive systems
(Anderson et al., 1988); and the impact of uncertainty regarding the
number of offspring on current consumption patterns (Arrow and Levin,
2009).

Evolutionary concepts have also appeared in the finance literature.
For example, Luo (1995) explores the implications of natural selection
for futures markets, Hirshleifer and Luo (2001) consider the long-run
prospects of overconfident traders in a competitive securities market,
and Kogan et al. (2006) show that irrational traders can influence mar-
ket prices even when their wealth becomes negligible. The literature on
agent-based modeling pioneered by Arthur et al. (1997), in which inter-
actions among software agents programmed with simple heuristics are sim-
ulated, relies heavily on evolutionary dynamics. And at least two prominent
investment professionals have proposed Darwinian alternatives to explain
market behavior. In a chapter titled “The Ecology of Markets,” Nieder-
hoffer (1997, Ch. 15) likens financial markets to an ecosystem with deal-
ers as “herbivores,” speculators as “carnivores,” and floor traders and
distressed investors as “decomposers.” And Bernstein (1998) makes a
compelling case for active management by pointing out that the notion
of equilibrium is rarely realized in practice and that market dynamics are
better explained by evolutionary processes.

But in our specific context, the two most relevant lines of research—
one from biology and the other from economics—involve direct applications
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of evolutionary principles to individual behavior and preferences. In the
evolutionary biology literature, Maynard Smith (1982) has developed the
concept of an “evolutionarily stable strategy” (ESS), specific behaviors that
survive over time by conferring reproductive advantages or “fitness,” typi-
cally measured by the rate of population growth. Using this notion of fitness,
Fretwell (1972), Cooper and Kaplan (1982), and Frank and Slatkin (1990)
observe that randomizing behavior can be advantageous (in terms of maxi-
mizing geometric growth rates) in the face of stochastic environmental condi-
tions. The impact of variability in reproductive success among individuals in
a population has been shown to yield a kind of risk aversion (which increases
average reproductive success) and “bet-hedging” (which reduces the variance
of reproductive success) (Slatkin, 1974; Caraco, 1980; Real, 1980; Ruben-
stein, 1972; Seger and Brockmann, 1987). Frank and Slatkin (1990) pro-
pose a framework that highlights the importance of correlations among
individual reproductive success in determining the path of evolution. And
similar results have been derived in the behavioral ecology literature, in
which the maximization of fitness via dynamic programming has been
shown to yield several observed behaviors, including risk-sensitive foraging
in mammals (Real and Caraco, 1986; Stephens and Krebs, 1986; Mangel and
Clark, 1988) and seed dispersal strategies in plants (Levin et al., 1984; Levin
et al., 2003).

In the economics literature, evolutionary principles have been used to
justify the existence of utility functions and develop implications for their
functional form, as in Hansson and Stuart (1990) and Robson (1996a; 2001b)
(see, Robson, 2001a and Robson and Samuelson, 2009; 2010, for compre-
hensive reviews of this literature). For example, in an equilibrium model of
economic growth, Hansson and Stuart (1990) derive restrictions on individ-
ual preferences for consumption, savings, and labor-supply arising from the
forces of natural selection. Robson (1996a) investigates expected and non-
expected utility behaviors, and finds that idiosyncratic risk seeking may be
optimal from a population perspective even though it is sub-optimal from
an individual perspective (see also Grafen, 1999; Curry, 2001). And Rob-
son (2001b) argues that the kind of predictable behavior capable of being
captured by a utility function emerged naturally as an adaptive mechanism
for individuals faced with repeated choices in a nonstationary environment.
Specifically, early exploration in choice making (which is the primary focus
of our analysis), coupled with a utility-based rule of thumb for deciding when
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to cut exploration off and stick with a particular choice, leads to evolution-
arily optimal adaptation to unknown underlying distributions of outcomes.
Robson and Samuelson (2007) find that exponential discounting in utility
functions is consistent with evolutionarily optimal growth of a population,
and the emergence of time preference is derived by Rogers (1994), Samuel-
son (2001); Robson and Samuelson (2007; 2009) and Robson and Szentes
(2008).

However, as Waldman (1994, p. 483) observed, individually optimal
behavior predicted by expected utility—even when utility functions are
derived from evolutionary principles—may not always coincide with behav-
ior that maximizes fitness:

Another possible outcome is that preferences do not equate utility
maximization with fitness maximization, and correspondingly evolu-
tion then does not favor humans who are efficient utility-maximizers.
Instead what happens in this case is that evolution favors a system-
atic bias in the decision-making process which moves behavior away
from the maximization of utility and toward the maximization of
fitness.

Waldman (1994) provides a compelling illustration of this insight through
the comparison between asexual and sexual reproduction, in which the
latter yields evolutionarily stable second-best adaptations. In our binary
choice framework, we show that even with asexual reproduction, systematic
“errors” such as probability matching can persist and become dominant
despite the fact that such behavior is sub-optimal from the individual’s
perspective.

Our approach builds on the insights of Fretwell (1972), Maynard Smith
(1982), Waldman (1994), and Robson (1996a; 2001a) in applying the well
known principle of geometric-mean fitness (Dempster, 1955) to the actions of
a heterogeneous population of individuals and deriving the subset of behav-
iors that survive.3 However, our framework is considerably simpler, involving
only a single binary choice for each individual during its lifetime, a choice

3Geometric-mean fitness has also appeared in the financial context as the “Kelly crite-
rion” for maximizing the geometric growth rate of a portfolio (Kelly, 1956; Cover and
Thomas, 1991). However, the motivation for geometric-mean fitness in population biology
is considerably more compelling than in financial investments, as Samuelson (1971) has
argued (maximizing the geometric-mean return of a portfolio is optimal only for individ-
uals with a very specific risk preference, i.e., those with logarithmic utility functions).
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that has implications for the individual’s reproductive success. One virtue
of such parsimony is the universality with which this framework’s derived
behaviors are likely to be found among living organisms.4 Our model is
simple enough to solve analytically but remarkably rich in its implications
for behavior, yielding risk aversion, probability matching, loss aversion, and
more general forms of randomization. Also, as with most other models in
the population biology literature, the individual behaviors that survive in
our framework need not be optimal from the individual’s perspective and
may appear irrational. In fact, such behavior is merely adaptive, a product
of natural selection that is likely to be more primitive on an evolutionary
timescale than the more sophisticated learned behaviors captured by Rogers
(1994), Robson (1996a; 2001a), and Robson and Samuelson (2007; 2009). In
this respect, our analysis complements those of the existing literature on
evolutionary foundations of utility theory, providing additional evidence for
the link between behavior and natural selection at the most basic level of
choice.

3. The Binary Choice Model

We begin with a population of individuals that live for one period, produce a
random number of offspring asexually, and then die (“asexual semelparous”
organisms, in the jargon of evolutionary biology). During their lives, indi-
viduals make only one decision: they choose one of two possible courses of
action, denoted a and b, and this results in one of two corresponding random
numbers of offspring, xa and xb, described by some well-behaved probability
distribution function Φ(xa, xb). We assume that xa and xb are not perfectly
correlated, otherwise for all intents and purposes, individuals have only one
action available to them. We also assume:

(A1) (xa, xb) and log(fxa + (1−f)xb) have finite moments up to order 2
for all f ∈ [0, 1].

(A2) (xa, xb) is independently and identically distributed (IID) over time
and identical for all individuals in a given generation.

4For example, the fact that probability matching behavior has been observed in nonhuman
subjects—including ants (Deneubourg et al., 1987; Pasteels et al., 1987; Kirman, 1993;
Hölldobler and Wilson, 1990), bees (Harder and Real, 1987; Thuijsman et al., 1995; Keasar
et al., 2002), fish (Bitterman et al., 1958; Behrend and Bitterman, 1961), pigeons (Graf
et al., 1964; Young, 1981), and primates (Woolverton and Rowlett, 1998)—suggests that
they may have a common and ancient origin, and an evolutionary role that belies their
apparent shortcomings.
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(A1) and (A2) are standard assumptions that allow us to derive analytically
tractable results and are not nearly as implausible in biological contexts as
they are when applied to financial data.5 For the moment, we assume in
(A2) that xa and xb are the same two outcomes for all individuals in the
population; in other words, if two individuals choose the same action a, both
will produce the same number of random offspring xa. This implies that the
variation in offspring due to behavior is wholly “systematic,” i.e., the link
between action and reproductive success is the same throughout the entire
population. This assumption is significant and its ramifications can be better
understood when we consider the alternate case of “idiosyncratic” random
offspring in Section 6.

3.1. The role of Φ(xa, xb)

The role of Φ is critical in our framework, as it represents the entirety of the
implications of an individual’s actions for reproductive success. Embedded in
Φ is the biological machinery that is fundamental to evolution, i.e., genetics,
but of less direct interest to economists than the link between behavior and
reproductive success. If action a leads to higher fecundity than action b for
individuals in a given population, the particular set of genes that predispose
individuals to select a over b will be favored by natural selection, in which
case these genes will survive and flourish, implying that the behavior “choose
a over b” will flourish as well. On the other hand, if a and b have identical
implications for success, i.e., xa ≡ xb, then Φ is a degenerate distribution. By
asserting that Φ is a nondegenerate bivariate distribution, we have essentially
defined two equivalence classes of actions that have different implications
for reproduction, i.e., all actions yielding the same reproductive fitness are
considered equivalent in our framework.

The specification of Φ also captures the fundamental distinction between
traditional models of population genetics (Levins, 1969; Wright, 1968; Wil-
son and Bossert, 1990; Dawkins, 1976) and more recent applications of
evolution to behavior (Hamilton, 1964; Trivers, 1971; Wilson, 1975; May-
nard Smith, 1982); the former focuses on the natural selection of traits

5Both assumptions can be relaxed to some degree and at the expense of analytical sim-
plicity. For example, (A1) can be relaxed by considering random variables with no finite
moments of any order, in which case we must focus our attention on location and scale
parameters. The IID assumption of (A2) can also be relaxed by imposing stationarity and
ergodicity, or by allowing heterogeneity in the marginal distributions but imposing mix-
ing conditions as in White (1984). We expect qualitatively similar results in these more
general cases.
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(determined by genetics), whereas the latter focuses on the natural selec-
tion of behavior. Although behavior is obviously linked to genetics, the
specific genes involved, their loci, and the mechanisms by which they
are transmitted from one generation to the next are of less relevance to
economic analysis than the ultimate implications of behavior for repro-
duction, which is captured by Φ. In the jargon of econometrics, Φ may
be viewed as a “reduced form” representation of an individual’s biol-
ogy, whereas the molecular biology of genetics corresponds to the “struc-
tural form.”6 This terminology is more than a simple analogy—it accu-
rately summarizes the difference between our framework and the emerging
field of behavioral genomics (Plomin, 1990; Plomin et al., 1994; McGuf-
fin et al., 2001), which attempts to map traits and behaviors to specific
genes.

3.2. Individual behavior

Now suppose that each individual i chooses a with some probability f ∈ [0, 1]
and b with probability 1−f , denoted by the Bernoulli variable If

i , hence i’s
offspring xf

i is given by:

xf
i = If

i xa + (1 − If
i )xb, If

i ≡
{

1 with probability f

0 with probability 1 − f.
(1)

We shall henceforth refer to f as the individual’s “behavior” since it com-
pletely determines how the individual chooses between a and b. Note that f

can be 0 or 1, hence we are not requiring individuals to randomize—this will
be derived as a population-wide consequence of natural selection under cer-
tain conditions. Also, we ascribe no intelligence or volition to this behavior;
we are simply providing a formal representation for it, and then investi-
gating its evolutionary prospects. To that end, we assume that offspring
behave in a manner identical to their parents, i.e., they choose between a

and b according to the same f , hence the population may be viewed as
being comprised of “types” of individuals indexed by f that range contin-
uously from 0 to 1, including the endpoints. In this manner, we are able
to study the evolutionary dynamics of each type of individual over many
generations.

6Waldman (1994) uses the same terminology in his framework in which individual traits
are directly linked to reproductive success rather than specific genes.
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3.3. Population dynamics

Because our analysis involves individuals making binary decisions over time
and across multiple generations, the number and type of subscripts used
are sometimes excessive and confusing. Therefore, before considering the
dynamics of the population we have proposed, a few clarifying comments
regarding our notation may be useful.

Individuals in a given generation t are indexed by i, and generations are
indexed by t = 1, . . . , T . Because in all cases, we assume independently and
identically distributed randomness over time or, equivalently, generations,
on occasion we will omit the t subscript unless we wish to emphasize the
temporal ordering of the variables (such as a recursive relation between two
successive generations). Finally, a superscript f will denote the particular
type of individual as defined by the decision rule If

i in (1).
With these notational conventions in mind, denote by nf

t the total num-
ber of offspring of type f in generation t, which is simply the sum of all the
offspring from the type-f individuals of the previous generation:

nf
t =

nf
t−1∑

i=1

xf
i,t =

(nf
t−1∑

i=1

If
i,t

)
xa,t +

(nf
t−1∑

i=1

(1 − If
i,t)

)
xb,t (2)

nf
t

p
= nf

t−1( fxa,t + (1 − f)xb,t), (3)

where we have added time subscripts to the relevant variables to clarify their
temporal ordering, and “

p
=” in (3) denotes equality in probability as nf

t−1

increases without bound (see Definition A.1 in the Appendix), which follows
from the Law of Large Numbers applied to the sum

∑
i I

f
i,t/n

f
t−1 (recall that

If
i,t is IID across i).7

Through backward recursion, the population size from (3) of type-f indi-
viduals in generation T is given by:

nf
T

p
=

T∏
t=1

(fxa,t + (1 − f)xb,t) = exp

(
T∑

t=1

log(fxa,t + (1 − f)xb,t)

)
(4)

1
T

log nf
T

p
=

1
T

T∑
t=1

log(fxa,t + (1 − f)xb,t)

p→ E[log(fxa + (1 − f)xb)], (5)

7In particular, the Kolmogorov Law of Large Numbers asserts that
P

i If
i,t/nf

t−1 converges

almost surely to E[If
i,t]=f (see, for example, Serfling, 1980, Ch. 1.8).
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where “
p→” in (5) denotes convergence in probability (see Definition A.1 in

the Appendix), and follows from the Kolmogorov Law of Large Numbers
applied to the sum

∑
t log(fxa,t + (1 − f)xb,t)/T as T increases without

bound (Lewontin and Cohen, 1969) (recall that (xa,t, xb,t) is assumed to be
IID over time, hence we have dropped the t subscripts in the expectation in
(5)), and we have assumed that nf

0 =1 without loss of generality.
Since the value of f that maximizes the population size nf

T is also the
value of f that maximizes T−1 log nf

T ,8 (5) implies that this value converges
in probability to the maximum of the following the expectation9:

µ(f) ≡ E[log(fxa + (1 − f)xb)]. (6)

This expression is simply the expectation of the log-geometric-average
growth rate of the population, and the value f∗ that maximizes it—which
we shall call the “growth-optimal” behavior to distinguish it from behavior
that may be optimal for the individual—is given by (all proofs are relegated
to the Appendix):

Proposition 1. Under Assumptions (A1)–(A2), the growth-optimal behav-
ior f∗ is:

f∗ =




1 if E[xa/xb] > 1 and E[xb/xa] < 1

solution to (8) if E[xa/xb] ≥ 1 and E[xb/xa] ≥ 1

0 if E[xa/xb] < 1 and E[xb/xa] > 1,

(7)

where f∗ is defined implicitly in the second case of (7) by:

0 = E
[

xa − xb

f∗xa + (1 − f∗)xb

]
, (8)

and the expectations in (5)–(8) are with respect to the joint distribution
Φ(xa, xb).

The three possible behaviors in (7) reflect the relative reproductive suc-
cess of the two choices and is a generalization of the “adaptive coin-flipping”

8This follows from the fact that T−1 log(nf
T ) is a monotone transformation nf

T .
9More precisely, the value f∗ that maximizes µ(f) corresponds to a population size nf∗

t

that is asymptotically larger than any other population nf
t , f �= f∗, in the sense that

plimt→∞ nf
t /nf∗

t =0. See Section 3.4 for a more detailed exposition of these asymptotic
properties.
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strategies of Cooper and Kaplan (1982). Choosing a deterministically will be
optimal if choice a exhibits unambiguously higher expected relative fecun-
dity; choosing b deterministically will be optimal if the opposite is true;
and randomizing between a and b will be optimal if neither choice has a
clear-cut reproductive advantage. This last outcome is perhaps the most
counter-intuitive because it is sub-optimal from an individual’s perspective,
but the population perspective implies that in such cases, the individuals
that have the most reproductive success over time will be those that choose
randomly according to probability f∗.10 If, however, one choice is signifi-
cantly better than the other in terms of the expected ratio of offspring, then
over time, the behavior that will survive is deterministic choice, not random-
ization. In these extreme cases, because of the unambiguous implications for
fecundity, the deterministic choice that leads to higher reproductive success
will quickly dominate the population.

The behavior f∗ that emerges through the forces of natural selection is
quite distinct from the neoclassical economic framework of expected util-
ity in one important respect: expected utility theory implies deterministic
behavior.11 Given the same environmental conditions and preference param-
eters, the action that maximizes expected utility will be the same. In our
framework, there are many circumstances in which f∗ is strictly greater than
0 and less than 1, hence even if an individual’s circumstances are identical,
the behavior shaped by natural selection will not be.12

The deterministic choices f∗ = 0, 1 in Proposition 1 may be viewed as a
primitive form of herding behavior—where all individuals in the population
choose to act in the identical manner—especially if the relative fecundities

10Cooper and Kaplan (1982) interpret this behavior as a form of altruism because indi-
viduals seem to be acting in the interest of the population at the expense of their own
fitness. However, Grafen (1999) provides a different interpretation by proposing an alter-
nate measure of fitness, one that reflects the growth rate of survivors.
11Although random utility models have been proposed by Thurstone (1927), McFadden
(1973), Manski (1975), and others in the discrete-choice literature (see Manski and McFad-
den (1981)), the source of randomness in these models is assumed to be measurement error,
not behavior itself.
12In this respect, our framework differs in a fundamental way from the evolutionary mod-
els of Robson (1996a; 2001b), Robson and Samuelson (2007), and Robson and Szentes
(2008) in which evolutionary arguments are used to derive specific utility functions that
individuals optimize to yield particular behaviors. Although Robson (2001b) proposes the
emergence of utility functions as an adaptation to repeated choices in a nonstationary envi-
ronment, our framework shows that the concept of utility is not necessarily primitive to
behavior or natural selection, and there is at least one type of behavior—randomization—
that cannot be captured by standard expected utility theory.
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E[xa/xb] and E[xb/xa] shift suddenly from the intermediate state in (7) to
one of the deterministic states due to rapid environmental changes, and if
there is sufficient diversity of behavior left in the population after the change
occurs.13 To an outside observer, behaviors among individuals in this pop-
ulation may seem heterogenous before the shift (because individuals are
randomizing) but will become increasingly similar after the shift—as selec-
tive pressures begin to favor deterministic behavior over randomization—
creating the appearance (but not the reality) of intentional coordination,
communication, and synchronization. If the reproductive cycle is sufficiently
short, this change in population-wide behavior may seem highly responsive
to environmental changes, giving the impression that individuals are learn-
ing about their environment. This is indeed a form of learning but it occurs
at the population level, not at the individual level, and not within an individ-
ual’s lifespan. Considerably more sophisticated adaptations are necessary to
generate true herding and synchronization behavior as in Hamilton (1971),
Mirollo and Strogatz (1990), and Strogatz and Stewart (1993), including
sensory inputs, conditional behavior (conditioned on additional state vari-
ables), and neuroplasticity.

Proposition 1 may also be interpreted as a primitive form of group
selection, in which natural selection appears to operate at the group level
instead of, or in addition to, the level of individuals, traits, or genes (Wynne-
Edwards, 1962; Sober and Wilson, 1998). However, in this case, the notion
of a “group” is determined by the interaction between behavior and the
environment—those individuals with behavior f∗ will appear to be favored,
and those with other behaviors f �= f∗ will be disadvantaged.

3.4. Asymptotic properties

The growth-optimal behavior described in (7) is simple, but a direct corollary
is that f∗ leads to a “winner-take-all” outcome in which individuals of all
other sub-optimal types f ′ will be rapidly overrun by individuals of type f∗,

13This last qualification is critical due to our assumption that offspring behave exactly
as their parents, hence if individuals with behavior f = 1 no longer exist in the pop-
ulation, such behavior cannot emerge even if it becomes optimal from the population
perspective. This observation underscores the importance of random mutations and the
evolutionary advantages of sexual reproduction in the face of stochastic environmental
conditions.
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since the ratio of the population sizes of f ′ and f∗ converges exponentially
fast to 0 (due to the optimality of f∗):

Corollary 1. Under Assumptions (A1)–(A2), as T increases without bound,
the geometric-average growth rate (nf

T )1/T of the population of individuals
with behavior f converges in probability to exp(µ(f)), and the growth-optimal
behavior f∗ will dominate the population exponentially fast since:

(
nf ′

T

nf∗
T

)1/T
p
= exp([µ(f ′) − µ(f∗)]) p→ 0, (9)

which implies that nf ′
T /nf∗

T

p→ 0 at an exponential rate.

This corollary confirms that the behavior produced by the forces of
natural selection is indeed given by (7), and the exponential rate of
convergence underlies the winner-take-all phenomenon that seems to char-
acterize so many competitive situations (see, e.g., Frank and Cook, 1995).
Whether such behavior is deterministic or random depends entirely on the
implications of such behavior for reproductive success.

Note that our asymptotic approach to studying the evolutionary prop-
erties of behavior is different from the typical biologist’s perspective in that
the main object of interest for us is f∗, not the population itself. In particu-
lar, the actual size of the population of type-f individuals is of less concern
to us than the fact that selection will favor one particular f∗. In fact, in
contrast to standard models in population dynamics that are formulated to
have stable equilibria, the population size in our framework approaches 0
or infinity in the limit, depending on the parameters of Φ(xa, xb).14 Never-
theless, we can fully characterize the statistical properties of the population
via the Central Limit Theorem. Specifically, as T grows without bound, it
can be shown that the suitably normalized population size nf

T approaches a
lognormal distribution:

Proposition 2. Under Assumptions (A1)–(A2), as T increases without
bound, the geometric average (nf

T )1/T of the population size of individ-
uals with behavior f converges in distribution to a lognormal random

14To see why, observe that the Kolmogorov Law of Large Numbers implies that T−1 log nf
T

converges almost surely to µ(f)≡E[log(fxa+(1−f)xb)]. If µ(f) is positive, the population
grows without bound, and if µ(f) is negative, the population becomes extinct.
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variable:
√

T (T−1 log nf
T − µ(f)) a∼ N (0, σ2(f)),

σ2(f) ≡ Var[log(fxa + (1 − f)xb)], (10)

where ‘ a∼’ denotes asymptotic equivalence in distribution.

This evolutionary basis of behavior is the same as Seger and Brock-
mann’s (1987) geometric-mean fitness criterion but is applied directly to
reproductive success x, not to specific genes. The basic logic of (7) is sim-
ilar to the ESS of Maynard Smith (1982), in which mixed strategies are
shown to be evolutionarily stable, but our approach is more parsimonious
and, by design, yields broader implications for behavior as represented by
Φ. Our derived behaviors are also distinct from those of Hansson and Stu-
art (1990), Robson (1996a; 1996b; 2001a,b), Grafen (1999), Curry (2001),
Samuelson (2001), and Robson and Samuelson (2007), in which evolution-
ary arguments are used to justify specific types of utility functions and
risk preferences—in the latter cases, two individuals with identical utility
functions will behave identically, whereas in our case, two individuals with
identical f∗ ∈ (0, 1) may make different choices at any point in time (see
also Waldman, 1994).

In the sections to follow, we show that this simple binary choice frame-
work and growth-optimal behavior can explain a surprisingly rich set of
behavioral anomalies that have been a source of controversy in economics,
psychology, and evolutionary biology, including more general forms of prob-
ability matching, loss aversion, and risk aversion.

4. Probability Matching

Using the binary choice framework, we can easily derive probability match-
ing behavior as emerging solely through the forces of natural selection. In
Section 4.1, we derive conditions that yield exact probability matching. In
Section 4.2, we generalize this result considerably, deriving conditions for
approximate probability matching, as well as conditions under which prob-
ability matching does not arise.

4.1. Exact probability matching

To develop further intuition for the binary choice model, consider the special
case in which the number of offspring (xa, xb) are simply Bernoulli random
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variables that are perfectly out of phase in each of two possible environmen-
tal states:

State 1 State 2
Action (prob. p) (prob. 1 − p)

a xa = m xa = 0

b xb = 0 xb = m

(11)

With probability p, one environmental state is realized in which choice a

yields m > 0 offspring and choice b yields none, and with probability 1 − p,
the other environmental state is realized in which the reverse is the case.
Without loss of generality, assume that p ∈ (1/2, 1] so that the environmental
state in which choice a produces offspring is more likely.

In this simple case of 0 or m offspring, the expectation in (6) can be
evaluated explicitly as:

µ(f) = log m + p log f + (1 − p) log(1 − f) (12)

and the value of f that maximizes this expression is p. Despite the fact
that setting f = 1 maximizes the likelihood that an individual is able to
reproduce, such “selfish” behavior is not sustainable from a population per-
spective because if all individuals were to behave in this way, the entire
population would be wiped out the first time xa =0. Since such an extinc-
tion is almost sure to occur eventually,15 the behavior f =1 will ultimately
be eliminated from the population. In contrast, the randomizing behavior
f∗ = p yields the highest possible growth rate I(p) = log(mpp(1−p)(1−p)).
This is classic probability matching, first documented over half a century ago
(Grant et al., 1951). Since then, this behavior has become so well established
among both human and nonhuman subjects that it is now referred to as the
“matching law” or “Herrnstein’s law.”16 However, there have been several
notable departures from this behavioral pattern (Baum, 1974; Horne and
Lowe, 1993; Kogler and Kühberger, 2007), hence this “law” may not be as
consistent as its moniker suggests. In the next section, we provide a general
explanation for both matching behavior and departures from it.

15If all individuals always choose a, and if (xa, xb) is independently and identically dis-
tributed over time, the probability of extinction by time t is 1−pt, which approaches 1 as
t increases without bound.
16See Herrnstein (1961; 1970; 1997), Bradshaw et al. (1976), Davison and McCarthy
(1988), Herrnstein and Prelec (1991), and the references cited in footnote 4.

Q
ua

rt
. J

. o
f 

Fi
n.

 2
01

1.
01

:5
5-

10
8.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
A

SS
A

C
H

U
SE

T
T

S 
IN

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 (

M
IT

) 
on

 0
5/

01
/2

0.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 15, 2011 18:20 WSPC/S2010-1392 271-QJF S201013921100002X.tex

74 • T. J. Brennan & A. W. Lo

4.2. The general case

The Bernoulli example above can be easily generalized to any arbitrary
number of offspring for both choices:

Prob(xa = ca1, xb = cb1) = p ∈ [0, 1]

Prob(xa = ca2, xb = cb2) = 1 − p ≡ q,
(13)

where we assume that cij ≥ 0 and caj + cbj �= 0, i = a, b, and j = 1, 2.
The condition caj + cbj �= 0 rules out the case where both caj and cbj are
0, in which case the binary choice problem becomes degenerate because
both actions lead to extinction; hence the only choice that has any impact
on fecundity is in the nonextinction state, and the only behavior that is
sustainable is to select the action with the higher number of offspring.

The growth-optimal behavior in this case will depend on the relation
between the probability p and the relative-fecundity variables rj ≡ caj /cbj
for each of the two possible states of the world j = 1, 2.17 Specifically, we
have:

Proposition 3. Under Assumptions (A1)–(A2), and if (xa, xb) satisfies
(13), then the growth-optimal behavior f∗ is given by:

f∗ =




1 if r2 ∈
[
q +

pq

r1 − p
,∞
)

and r1 > p

p

1 − r2
+

q

1 − r1
if




r2 ∈
(

1
q
− p

q
r1, q +

pq

r1 − p

)
and r1 > p, or

r2 ∈
(

1
q
− p

q
r1, ∞

)
and r1 ≤ p

0 if r2 ∈
[

0 ,
1
q
− p

q
r1

]
.

(14)

Figure 1 illustrates the values of r1 and r2 that yield each of the three
types of behaviors in (14). If r1 and r2 are not too different—implying that
the ratio of fecundities of choices a and b is not that different between the two
states of the world—then random behavior yields no evolutionary advantage
over deterministic choice. In this case, the individually optimal behavior

17Since cij may be 0, the ratios rj may be infinite if a finite numerator is divided by 0,
which poses no issues for any of the results in this paper as long as the usual conventions
involving infinity are followed. The ambiguous case of rj = 0/0 is ruled out by the condition
caj + cbj �= 0.
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(f∗ = 0 or 1) will prevail in the population. If, on the other hand, one of the r

variables is large while the other is small, then random behavior will be more
advantageous from the population perspective than a deterministic one. In
such cases, there are times in which each choice performs substantially better
than the other, hence it is evolutionarily optimal for a population to diversify
between the two choices rather than to always choose the outcome with the
highest probability of progeny in a single generation. This case is summarized
in:

Corollary 2. Suppose there exists a large difference between r1 and r2;
without loss of generality, let r1 
 0, r2 � 1, and p > 1/2. Then under
Assumptions (A1)–(A2), and if (xa, xb) satisfies (13), the growth-optimal
behavior is given by:

f∗ = p(1 + O(1/r1) + O(r2)) ≈ p. (15)

Equation (15) shows that if one choice is much worse than the other choice
p-percent of the time, and if the other choice is much worse than the first
(1 − p)-percent of the time, then the first choice should be chosen with
probability p and the second choice should be chosen with probability 1−p.
The definition of “much worse” is made precise by specifying that the values
of 1/r1 and r2 are both close to zero—over time, the individuals that flourish
in such a world are precisely those that engage in approximate probability
matching behavior.

When r1 and r2 satisfy the condition:

0 = p
r2

1 − r2
+ q

1
1 − r1

, (16)

exact probability matching behavior arises, and the solid black curve in
Figure 1 illustrates the locus of values for which this condition holds. The
horizontal asymptote of the curve occurs at r2 = 0, so as r2 tends toward
zero and r1 becomes relatively large, exact probability matching will be
optimal (note that the asymmetry between r1 and r2 is due entirely to
our requirement that f∗ = p and p �= 1/2). However, values of (r1, r2)
off this curve but still within the shaded region imply random behavior
that is approximately—but not exactly—probability matching, providing
a potential explanation for more complex but nondeterministic foraging
patterns observed in various species (Deneubourg et al., 1987; Pasteels
et al., 1987; Kirman, 1993; Thuijsman et al., 1995; Keasar et al., 2002).
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Fig. 1. Regions of the (r1, r2)-plane that imply deterministic (f∗ = 0 or 1) or randomiz-
ing (0 < f∗ < 1) behavior, where rj = caj /cbj measures the relative fecundities of action
a to action b in the two states j = 1, 2. The asymptotes of the curved boundary line occur
at r1 = p and r2 = q. Values of r1 and r2 for which exact probability matching is optimal
is given by the solid black curve.

4.3. Individually optimal versus growth-optimal behavior

It is instructive to compare the growth-optimal behavior of (14) with the
behavior that maximizes an individual’s reproductive success, denoted by f̂ :

Proposition 4. Under Assumptions (A1)–(A2), and if (xa, xb) satisfies
(13), then the individually optimal behavior f̂ is deterministic and given
by:

f̂ =




1 if r2 > 1 +
p

q
(1 − r1)r3

0 if r2 < 1 +
p

q
(1 − r1)r3,

r3 ≡ cb1

cb2
. (17)

For a fixed value of r3, the threshold in (17) that determines the opti-
mal individual behavior is a line that divides the (r1, r2)-plane into two
regions. For values of (r1, r2) above this line, f̂ = 1, and for values below
this line, f̂ = 0. When r3 = 1, this implies that any time the growth-optimal
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behavior involves randomization, it will always be at odds with the individ-
ually optimal behavior f̂ = 1. We shall return to this important special
case below. Of course, from a population perspective, the growth-optimal
behavior f∗ is independent of r3, and depends only on the relative perfor-
mance of the two possible choices as measured by the relative fecundities r1

and r2.
We shall revisit this distinction between growth-optimal and individually

optimal behavior in Section 6 when we consider the case where the random-
ness in offspring is idiosyncratic, i.e., (xa, xb) is independently and identically
distributed across individuals, as well as across time. Under this alternate
environment, we will show that the growth-optimal and individually optimal
behaviors are identical.

5. Risk Preferences

Our binary choice model can also be used to study the evolution of risk
preferences by making one of the two choices riskless. In particular, in the
Bernoulli case (13), suppose that choice b yields a nonrandom outcome cb1 =
cb2 =cb (or r3 =1). In this case, each individual is choosing between a random
outcome and a certain one, where we maintain the assumption that:

Prob(xa = ca1, xb = cb) = p ∈ [0, 1]

Prob(xa = ca2, xb = cb) = 1 − p ≡ q.
(18)

Without loss of generality, assume that ca1 < ca2. To ensure that the choice
between a and b is not trivial, we require that ca1 < cb < ca2, otherwise one
choice will always dominate the other trivially. For convenience, we shall
parametrize cb as a convex combination of the risky outcomes ca1 and ca2:

cb ≡ θca1 + (1 − θ)ca2, θ ∈ (0, 1). (19)

When θ = 0, the riskless outcome is ca2, which dominates the risky choice,
and when θ = 1, the riskless outcome is ca1, which is dominated by the risky
choice, hence θ ∈ (0, 1) covers the entire spectrum of possible risk/reward
trade-offs in which neither choice dominates the other.

In Section 5.1, we derive the growth-optimal risk preferences by applying
the results of Section 3 to (18). Using these preferences, in Section 5.2, we
show how risk aversion emerges purely through the forces of natural selec-
tion and derive an implied evolutionary “risk premium” that is completely
independent of any notion of economic equilibria. And in Section 5.3, we
show how growth-optimal behavior f∗ can explain loss aversion.
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5.1. Growth-optimal risk preferences

Applying Proposition 3 to (18) yields:

Corollary 3. Under Assumptions (A1)–(A2), and if (xa, xb) satisfies (18),
then the growth-optimal behavior f∗ is given by:

f∗ =




1 if θ ∈ [θo, 1)(
1 − p

θ

)(
1 +

1
(1 − θ)(σ − 1)

)
if θ ∈ (p, θo)

0 if θ ∈ (0, p],

(20)

where θo≡pσ/(pσ + q), and σ≡ca2/ca1 >1.

Note that σ can be viewed as a crude measure of a’s risk, hence our choice to
use the symbol typically reserved for standard deviation. As θ increases from
0 to 1, the number of offspring produced by the riskless choice b decreases
from ca2 to ca1, making the risky choice a relatively more attractive. How-
ever, for values of θ from 0 to p, the risky choice is not sufficiently attractive,
and the optimal behavior is to select the sure thing (f∗ = 0). As θ increases
from p to θo, the optimal behavior f∗ from the population perspective is
to select choice a with increasingly higher probability, and when θ exceeds
the threshold θo, the risky choice becomes so attractive relative to the sure
thing that individuals always choose the risky alternative (f∗ = 1). Figure 2
graphs this relation between f∗ and θ for three values of σ and shows that
it is close to piece-wise linear for σ = 2 but nonlinear for σ = 100. Figure 3
provides a more complete depiction of the trade-off between σ and θ in
determining the growth-optimal behavior f∗.

A more transparent version of the growth-optimal behavior in Corollary 3
can be derived by restating (20) in terms of the outcomes of each of the two
choices a and b. As before, let cp and co denote the arithmetic and harmonic
means of the a outcomes, respectively, so that:

cp ≡ pca1 + qca2, and co =
1

p

ca1
+

q

ca2

. (21)

The values co and cp correspond to the values θ = θ0 and θ = p in Corollary 3,
hence the growth-optimal behavior of an individual depends entirely on
where the sure thing cb lies in the range (ca1, ca2): if cb ∈ [ca1, co], then the
risky choice is always growth-optimal; if cb ∈ (co, cp), randomizing between
the risky choice and the safe choice is growth-optimal; and if cb ∈ [cp, ca2),
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Fig. 2. The growth-optimal behavior f∗ as a function of θ for p = 1/3 and various levels
of the ratio σ = ca2/ca1 of the two outcomes of the risky alternative a. The param-
eter θ determines the magnitude of the payoff cb = θca1 + (1 − θ)ca2, of the riskless
alternative b.

Fig. 3. Radial plot of the growth-optimal behavior f∗ for p = 1/3 as a function of θ,
which varies from 0 to 1 clockwise around the semi-circle, and σ = ca2/ca1, which varies
from 1 to infinity from the center of the semi-circle to its perimeter. The parameter θ
determines the magnitude of the payoff cb = θca1 +(1− θ)ca2 of the riskless alternative b.

the safe choice is always growth-optimal.18 These outcomes are illustrated
in Figure 4, in which the green range for cb yields the safe choice as the
growth-optimal behavior, the red range yields the risky choice, and the gray
range yields randomization.

18Note that the ordering ca1 < co < cp < ca2 always holds, since the harmonic mean is
less than the arithmetic mean.
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If cb is in this interval, randomize
with probability f*

If cb is in this interval, always
choose the riskless option (f*=0)

c

ca2

cp

with probability f*

If cb is in this interval, always
choose the risky option (f*=1)

ca1

co

Fig. 4. Growth-optimal behavior of risky/riskless choice as a function of the magnitude
of the riskless outcome cb. The green range for cb indicates that the riskless choice is
growth-optimal, the red range indicates that the risky choice is growth-optimal, and the
gray region indicates that randomizing between the risky and riskless choices is growth-
optimal. The relative widths of the three regions, relative to the total range ca2−ca1, are
displayed to the right of each region.

Of course, the growth-optimal behavior depends also on p, the probabil-
ity of the higher-yielding outcome in a, and this dependence is implicit in
the relative widths of the three ranges in Figure 4. In particular, the relative
width of the interval in which the riskless choice is always growth-optimal
is given by p—the more likely the lower risky outcome ca1 is, the greater
the range of values for which the certain outcome cb dominates the risky
outcome ca. The relative width of the interval in which the risky choice is
always growth-optimal is given by 1/(1+σp/(1− p)), which is decreasing in
both σ and p—as the riskiness of a or the likelihood of the lower outcome
increases, the region in which the risky choice is always growth-optimal
becomes smaller. And for a fixed probability p, the risk parameter σ deter-
mines the relative magnitude of the randomization interval as compared to
the risky choice interval. Not surprisingly, for larger σ, the randomization
interval is wider, implying a greater range of values of cb for which random-
izing between the risky and riskless choices is growth-optimal. We shall see
another manifestation of this behavior toward risk in the next section.

5.2. Risk aversion

Our binary choice model also shows that the property of risk aversion—
the need to compensate individuals with a positive payment, i.e., a “risk
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premium,” to induce them to accept a fair gamble—arises quite naturally
from natural selection. To see how, consider the risky/riskless case of (18) in
Section 5, but now let the payoffs for the risky option a be defined relative
to the riskless payoff cb of b:

ca1 ≡ cb − d, ca2 ≡ cb + u, u, d > 0 (22)

and consider the case in which the optimal behavior f∗ is exactly 1/2, so that
neither choice is selected more frequently than the other. This value implies
that the growth-optimal behavior is indifferent between the riskless payoff
of b and the risky payoff of a, which, in turn, implies that the two choices
must have the same implications for population growth. In this respect, b’s
sure payoff may be viewed as the “certainty equivalent” of a, an economic
concept used to measure the dollar value of random payoffs.

Assuming that p = q = 1/2 so that u and d are equally likely outcomes,
we then derive the implications of these parameter settings for u and d:

u = d +
d2

cb − d
. (23)

When u = d, behavior is said to be “risk neutral” because the expected
value of a is identical to the sure payoff of b. However, Equation (23) shows
that u must exceed d by a positive amount d2/(cb − d) to be consistent with
the behavior f∗ = 1/2. The difference between the expected values of a

and b is:

π ≡ d2

2(cb − d)
, (24)

which can be considered an “evolutionary risk premium.” However, unlike
the risk premia of economic models of rational markets (Merton, 1980; Mehra
and Prescott, 1985), which depend on the equalization of supply and
demand, π arises from the fact that populations grow geometrically (see
Equation 6), and the factor by which the population grows, exp(E[log(x)]),
is always less than or equal to the expected number of offspring in a single
generation, E[x], due to Jensen’s Inequality.19 Therefore, risky choices will

19Jensen’s Inequality states that the expected value of a convex function g(·) of a random
variable x is greater than or equal to the function of the expected value of x, or E[g(x)] ≥
g(E[x]). The opposite inequality holds for concave functions. In a study on risk-sensitive
foraging behavior, Smallwood (1996) applies Jensen’s Inequality to derive risk-aversive
behavior by first assuming that an animal’s fitness is an increasing but concave function
of its energy level, and then applying Jensen’s Inequality to foraging behavior that yields
random energy levels.
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always yield lower population growth than the corresponding riskless choices
with identical expected values. From an evolutionary perspective, the only
sustainable behavior in which a and b are equally likely to be chosen is if the
risky choice a yields a larger expected number of offspring than the riskless
choice b, i.e., u must always be larger than d.

This result may also explain risk aversion in nonhuman animal species,
often called “risk-sensitive foraging behavior” by ecologists, who have
observed this behavior in organisms from bacteria to primates (Deneubourg
et al., 1987; Harder and Real, 1987; Pasteels et al., 1987; Hölldobler and Wil-
son, 1990; Kirman, 1993; Thuijsman et al., 1995; Smallwood, 1996; Keasar
et al., 2002; Ben-Jacob, 2008). Regardless of the species, (23) shows that
when cb is very large relative to d, the evolutionary risk premium π becomes
negligible since a bad outcome for a has very little impact on growth rates
given the magnitude of cb. However, when d is close to cb, a bad outcome for
a implies near sterility for that individual, hence a substantial risk premium
is required to maintain the individual’s indifference between a and b.

5.3. Loss aversion

The growth-optimal behavior can also generate loss aversion, the tendency of
human subjects to take less risk when choosing between two potential gains,
and to take more risk when choosing between two potential losses (Tversky
and Kahneman, 1974; Kahneman and Tversky, 1979). For example, when
offered the choice between investment opportunities A and B, where A is a
lottery ticket paying US$1 million with a 25% probability and US$0 with
75% probability while B generates a sure profit of US$240,000, the vast
majority of MIT Sloan School of Management MBA students have chosen
B in many trials over the past two decades.20 However, when these same
subjects were offered the choice between investment opportunities A′ and
B′, where A′ is a lottery ticket yielding a loss of US$1,000,000 with 75%

20 This example is a modification of original experiments conducted by Tversky and
Kahneman (1974) with Stanford undergraduate students using actual cash payoffs. The
MIT Sloan MBA versions were based exclusively on hypothetical classroom surveys, and
the primary modification was an increase in the dollar values of the outcomes, a very
telling change that was necessitated by the fact that MBA students did not exhibit loss
aversion with smaller payoffs. See the discussion in the remainder of Section 5.3 for an
explanation of this interesting difference.
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probability and US$0 with 25% probability while B′ generates a sure loss
of US$750,000, virtually all of them chose A′, the more risky alternative.
Such inconsistent risk attitudes have material adverse implications: the most
popular choices of B and A′ yield a combined outcome that is US$10,000
less than A and B′, no matter how the lotteries turn out.21

To see how loss aversion arises in our framework, we must first consider
the relation between monetary payoffs and reproductive success, i.e., we
must link an individual’s financial wealth to the number of offspring such
wealth affords. Only when this relation is specified can we deduce the impact
of natural selection on decisions involving financial gain or loss. Therefore,
denote by c(w) a “reproduction function” that yields the number of off-
spring produced by an individual with total wealth w. Basic biological and
economic considerations suggest the following three properties for c(w):

(A3) c(w) is a continuous nondecreasing function of wealth w.
(A4) c(w) = 0 for all levels of wealth w below a subsistence level wo.
(A5) c(w) is bounded above by some finite number c > 0.

Assumption (A3) states that more wealth leads to more offspring,
Assumption (A4) acknowledges the existence of a subsistence level of wealth
below which an individual cannot produce any offspring, and Assump-
tion (A5) reflects environmental resource constraints that place an upper
limit on the number of offspring any individual can generate, irrespective of
wealth.

These assumptions seem obvious and almost trivially true,22 yet they
have surprisingly sharp implications for the properties of c(w): they imply
that c(w) necessarily resembles the S-shaped utility functions documented

21The combined outcome of choices B and A′ is US$760,000 with probability 75% and
US$240,000 with probability 25%, while in contrast the combined outcome of choices A
and B′ is US$750,000 with probability 75% and US$250,000 with probability 25%. Thus,
a subject choosing B and A′ expects to have an outcome that is US$10,000 worse than
that corresponding to the choice of A and B′. Moreover, if the results of the two lotteries
are perfectly correlated, then a subject choosing B and A′ obtains a combined payoff that
is US$10,000 lower in each possible state of the outcomes.
22Perhaps the least obvious of the three is the continuity assumption in (A3), which
depends, of course, on the numeraire with which wealth is measured and how wealth
interacts with the biology of reproduction. With the advent of fiat money, and given current
in vitro fertilization technologies, we believe that continuity is a reasonable approximation
to human reproduction.
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experimentally by Kahneman et al. (1982) and other behavioral economists
in a sense made precise by the following proposition.23

Proposition 5. If c(w) satisfies (A3)–(A5) and is twice continuously
differentiable, then c(w) is concave for sufficiently large values of w and
convex for sufficiently small values of w. If c(w) satisfies (A3)–(A5) but is
not continuously differentiable, then a slightly weaker result holds: there exist
values w1 < w2 such that :

c(λw + (1 − λ)w1) ≥ λc(w) + (1 − λ)c(w1), for w � w1, and (25)

c(λw + (1 − λ)w2) ≤ λc(w) + (1 − λ)c(w2), for w 
 w2, (26)

where λ ∈ [0, 1].

With our assumptions and Proposition 5 in place, we can now translate
monetary payoffs into number of offspring through c(w) and consider the
impact of evolution on the behavior of individuals choosing between dollar-
denominated choices in the experimental setting described above.

Consider an experiment along the lines of Kahneman and Tversky (1979)
in which an individual is asked to choose between a risky investment A
yielding one of two final wealth levels wa1 and wa2, which imply reproductive
outcomes ca1 ≡ c(wa1) and ca2 ≡ c(wa2), and riskless investment B yielding a
guaranteed final wealth level wb which translates into reproductive outcome
cb ≡ c(wb). Suppose that the initial wealth of the individual is modest
relative to the incremental payoffs of A, so that the total wealth obtained
in either outcome of A is large. Then we have:

Corollary 4. Under Assumptions (A1)–(A5), and if wa1 is sufficiently
large so that c(·) is concave throughout the interval [wa1, wa2], we have
c−1(cp) < wp = pwa1 + qwa2, and the growth-optimal behavior is to take
the safe bet whenever wb is in the region [c−1(cp), wa2], which is strictly

23An even more fundamental implication of our model of behavior is that an individual’s
relative wealth—relative to others—should be more important than absolute wealth, as
suggested by Duesenberry (1949) and Frank (2000). This follows trivially from Corollary 1
and the existence of a mapping c(w) between wealth and fecundity. Because evolutionary
success is determined solely by relative growth rates, a monotonic relation between wealth
and fecundity implies that, ceteris paribus, and assuming reasonably similar functions c(w)
across individuals (i.e., similar biological specifications and constraints), natural selection
will favor those individuals with higher relative wealth. Note that Duesenberry’s (1949)
“relative income hypothesis” refers to income, not wealth. However, because wealth is
highly correlated with cumulative income flows, empirical phenomena associated with
relative wealth should also manifest themselves in relative income, ceteris paribus.
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larger than [wp, wa2] by the incremental interval [c−1(cp), wp] that depends
on the concavity of c(w). For values of wb below c−1(cp), the growth opti-
mal behavior is either to randomize or to take the risky bet according to
whether wb is larger or smaller than c−1(c0), respectively, where c0 is defined
in (21).

Corollary 4 shows that if an individual is confronted with a risky invest-
ment A that involves sufficiently large gains—so large that the relevant
portion of c(w) is concave—and the riskless investment B is not too small
relative to the payoffs from A but possibly smaller than the expected pay-
off, wp, from A, then the growth-optimal behavior will be to select the sure
thing. These results show that an individual is risk averse when it comes
to gains, preferring sure bets that pay less than the expected value of risky
bets, if the individual begins with a modest level of wealth, if A and B both
move the individual’s total wealth into the concave region of c(w), and if wb

is in the nonempty range [c−1(cp), wp].
Now consider two investment alternatives A′ and B′, where A′ is a risky

investment yielding one of two final wealth levels w′
a1 and w′

a2, which trans-
late into reproductive outcomes c′a1 ≡ c(w′

a1) and c′a2 ≡ c(w′
a2), and B′ is

a riskless investment with guaranteed final wealth level w′
b, which trans-

lates into reproductive outcome c′b ≡ c(w′
b), and suppose that w′

a2 is small,
implying incremental losses relative to initial wealth. Then we have:

Corollary 5. Under Assumptions (A1)–(A5), if c(·) is convex throughout
the interval [w′

a1, w
′
a2], we have c−1(c′p) > w′

p = pw′
a1+qw′

a2, and the growth-
optimal behavior is either to randomize or always to take the risky bet when-
ever w′

b is in the region [w′
a1, c

−1(c′p)], which is strictly larger than [w′
a1, w

′
p].

Moreover, the region in which the growth-optimal behavior is always to take
the risky bet, namely [w′

a1, c
−1(c′0)], may also be strictly larger than [w′

a1, w
′
p].

A sufficient condition for this to occur is that the function c(w) be invertible
in [w′

a1, w
′
a2] and also be sufficiently convex so that the function 1/c(w) is

concave in this region.

Corollary 5 shows that for a sufficiently extreme sure loss w′
b, individuals

will always choose the risky option A′, despite the fact that this choice may
lead to an even greater loss w′

a1 with probability p. In addition, individu-
als will always choose the risky option with some positive probability even
though the expected payoff of the risky option is less than that of the safe
bet, provided that the safe payoff w′

b is in the nonempty region [w′
p, c

−1(c′p)].
Moreover, they will choose the risky option with 100% probability even if
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the expected payoff of the risky option is less than that of the safe bet, pro-
vided that c(w) is sufficiently convex so that 1/c(w) is concave and w′

b is in
the nonempty region [w′

p, c
−1(c′o)]. This type of behavior for c(w) will occur,

for example, whenever c(w) follows a power law of the form α(β −w)−γ , for
0 < γ < 1.

Loss aversion arises when more risk is taken when choosing between a
sure and risky loss, and less risk is taken when choosing between a sure and
risky gain. Corollaries 4 and 5 show that such behavior is clearly growth-
optimal under Assumptions (A3)–(A5). However, our results go beyond this
basic pattern and imply that individuals will not simply choose always to
take the safe bet or always to take the risky choice. Rather, there is also a
region of wb values, namely [c−1(co), c−1(cp)] or [c−1(c′o), c−1(c′p)], where ran-
domization is optimal. In addition, for suitably constructed extreme losses,
i.e., tail risk, taking the risky bet deterministically is rarely optimal, and
instead, some degree of randomization is generally best. These results are
illustrated graphically in Figure 5.

Our framework may also explain some of the inconsistencies and insta-
bilities in the experimental evidence for loss aversion. One potential source
of instability is the fact that the typical experimental design offers the same
fixed set of choices to all subjects in a given experiment, a standard pro-
tocol that maintains identical “treatments” across subjects so as to render
the outcomes comparable across individuals. However, if subjects make deci-
sions based on reproductive success, then the proper method for controlled
experimentation is to offer all subjects the same choices denominated in
reproductive success, not the same incremental dollar wagers. Of course,
without knowledge of each subject’s net worth and reproduction function, it
is impossible to construct such a controlled experiment even if it were eco-
nomically viable. But by offering the same fixed-dollar wagers, two sources of
variation across subjects are injected into the experimental outcomes: varia-
tion in wealth levels and variation in the reproduction function c(w). These
factors may explain some of the variability in the findings of loss aversion
studies across venues and subject pools.

Of course, the fact that loss aversion emerges from an evolutionary
process does not imply that it is optimal from an individual investor’s per-
spective. In fact, loss-aversive behavior is routinely singled out by profes-
sional traders as counterproductive to their objectives. For example, the
phenomenon of “doubling down” in the face of mounting losses is a common
behavioral pattern among inexperienced traders, and the adage to “cut your

Q
ua

rt
. J

. o
f 

Fi
n.

 2
01

1.
01

:5
5-

10
8.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
A

SS
A

C
H

U
SE

T
T

S 
IN

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 (

M
IT

) 
on

 0
5/

01
/2

0.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 15, 2011 18:20 WSPC/S2010-1392 271-QJF S201013921100002X.tex

The Origin of Behavior • 87

(a) Kinked Subsistence Threshold

(b) Smooth Subsistence Threshold

Fig. 5. Kinked (a) and smooth (b) subsistence thresholds in reproduction functions c(w)
(in blue) relating the number of offspring c to monetary wealth w. In both graphs, if wb is
in the green region, then always choosing the riskless choice b is growth-optimal (f∗ = 0); if
wb is in the red region, then always choosing the risky choice a is growth-optimal (f∗ = 1);
and if wb is in the gray region between red and green, randomization is growth-optimal.
Wealth values with primes are equal to those without primes less a common fixed amount,
and the color coding is identical.
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losses and ride your gains” is time-honored Wall Street wisdom that is meant
to correct for loss aversion. In this respect, loss aversion is yet another exam-
ple of the evolutionary principle that individually optimal behavior need not
coincide with the growth-optimal behavior, a distinction we address explic-
itly in Section 6.

6. Idiosyncratic versus Systematic Risk

So far we have assumed that the number of offspring from actions a and b is
given by the same two random variables xa and xb, respectively, for all indi-
viduals, i.e., fecundity is systematic, implying differences between growth-
optimal and individually optimal behavior under certain conditions. In this
section, we show that if uncertainty in reproduction is, instead, idiosyncratic
to each individual, the growth-optimal behavior always coincides with indi-
vidually optimal behavior. This distinction points to the central role that
aggregate uncertainty plays in shaping the evolution of behavior and pref-
erences.24 In Section 6.1, we consider the case where fecundity is purely
idiosyncratic, so that (xa,i, xb,i) are independently and identically distributed
across individuals in a given generation. The general case of both idiosyn-
cratic and systematic fecundity is developed in Section 6.2.

6.1. Idiosyncratic risk

As before, denote by xf
i the random number of offspring produced by indi-

vidual i, but now suppose that:

xf
i = If

i xa,i + (1 − If
i )xb,i, If

i ≡
{

1 with probability f

0 with probability 1 − f,
(27)

where

(A2′) (xa,i, xb,i) is independently and identically distributed over time and
across individuals i in a given generation.

In contrast to the systematic case (1) and Assumption (A2), (xa,i, xb,i)
are now assumed to be independently and identically distributed across

24We thank Arthur Robson for encouraging us to explore the distinction between system-
atic and idiosyncratic risk in our framework. In Robson and Samuelson (2009), they show
that evolution selects for agents who maximize discounted expected utility, discounting at
the sum of the population growth rate and mortality rate, when risk is idiosyncratic, but
in the face of aggregate risk, the growth-optimal set of preferences involve higher discount
rates that imply nonexponential discounting.
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individuals as well as across time, and If
i are the same Bernoulli 0/1 random

variables summarizing the behavior of individual i as defined in Section 3.2.
Assumption (A2′) is a seemingly small change but it has dramatic conse-

quences for the evolutionary dynamics of the population and growth-optimal
behavior. In this case, the randomness in the number of offspring is strictly
idiosyncratic in the sense that the correlation between the number of off-
spring for two individuals i and j is 0, even if both individuals choose the
same course of action. Recall from (1) that in the systematic case, if two
individuals choose the same action a, both will generate the same number
of random offspring xa, i.e., their reproductive success is perfectly corre-
lated. Idiosyncratic fecundity implies that even if all individuals in a given
population choose the same action, there will still be considerable cross-
sectional variability in the number of offspring produced. This more diver-
sified outcome has a very different set of implications for growth-optimal
behavior.

In particular, in this case the total number of offspring nf
t across all

type-f individuals in generation t is:

nf
t =

nf
t−1∑

i=1

xf
i,t =

nf
t−1∑

i=1

If
i,txa,i,t +

nf
t−1∑

i=1

(1 − If
i,t)xb,i,t (28)

nf
t

p
= nf

t−1( fµa + (1 − f)µb ), µa ≡ E[xa,i], µb ≡ E[xb,i], (29)

where (29) follows from the Law of Large Numbers applied to the sums∑
i I

f
i xa,i/n

f and
∑

i I
f
i xb,i/n

f .25 The key difference between (3) and (29)
is that in the latter case, both the individual’s choice and the number of
offspring are idiosyncratic, hence both are subject to the Law of Large Num-
bers. This implies that in a large population of nf individuals, even if all
individuals choose the same action a, the outcomes will vary across individ-
uals (xa,i), whereas in the systematic case, all individuals will receive the
identical number of offspring xa. Alternatively, in the systematic case, the
number of offspring of individuals i and j are perfectly correlated, but in
the idiosyncratic case, they are perfectly uncorrelated.

This difference has significant consequences when we consider the behav-
ior of this group of type-f individuals over time. Adding a time subscript

25By construction If
i and xk,i are independent, k = a, b, hence their expected product is

the product of their expectations, and the Kolmogorov Law of Large Numbers guarantees
almost sure convergence as long as they are IID and their first moments are finite.
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t as before to denote the population size of this group nf
t at time t, we

have:

nf
t

p
= nf

t−1( fµa + (1 − f)µb). (30)

Without loss of generality, we normalize nf = 1 at t = 1, hence the total
population size in generation T is:

nf
T

p
=

T∏
t=1

nf
t = (fµa + (1 − f)µb)T (31)

(nf
T )1/T p

= exp
(

log(fµa + (1 − f)µb)
)

, (32)

where (32) differs from (5) in that there is no expectation over xa and
xb because the idiosyncratic nature of the cross-section of individuals has
eliminated the randomness in the population. This simple expression attains
its optimum at the extremes of f , hence we have:

Proposition 6. Under Assumptions (A1) and (A2′), the growth-optimal
behavior f∗ is given by:

f∗ =




1 if µa > µb

0 if µa ≤ µb,
(33)

which coincides with individually optimal behavior f̂ .

Proposition 6 states that when the randomness in fecundity is purely idiosyn-
cratic, the growth-optimal behavior coincides with the individually optimal
behavior. In contrast to the case of systematic fecundity, because the out-
come of each individual’s decision is independent of the outcomes of other
individuals’ decisions, it is exceedingly improbable for the entire popula-
tion to become extinct, even if all individuals engage in identical behav-
ior.26 However, when the randomness is purely systematic, identical behavior
among individuals does lead to extinction with positive probability, hence
growth-optimal behavior differs from individually optimal behavior. If envi-
ronmental challenges to reproductive success are systematic, the only type

26If we assume two states of nature as in the exact probability matching case of (11), the
probability of extinction is the probability that all individuals acting individually optimally
will simultaneously experience the zero-offspring outcome. Without loss of generality, if
we assume p < 1/2, then f̂ = f∗ = 0 (see Proposition 6), hence the probability of
extinction is pn which approaches 0 quickly even for modest population sizes (for example,
0.4550 = 4.6 × 10−18).
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of behavior that can survive in the long run in our framework is some form
of randomization.

The difference between idiosyncratic and systematic risk affects more
than behavior; populations subjected to idiosyncratic environmental risk
grow much more quickly. To see why, recall from Corollary 1 that in
the systematic-risk case, the geometric-average growth rate of the growth-
optimal population f∗ is given by:

(nf∗
T )1/T p

= exp(µ(f∗)) = exp(E[log(f∗xa + (1 − f∗)xb)]), (34)

where f∗ is given by (7). In the case of idiosyncratic risk, Proposition 6
implies that the geometric-average growth rate of the growth-optimal pop-
ulation f∗ is given by the larger of µa and µb. Without loss of generality,
assume that µa > µb. We then have the following inequality:

exp(E[log(f∗xa + (1 − f∗)xb)]) ≤ exp(log E[f∗xa + (1 − f∗)xb]) (35)

= f∗µa + (1 − f∗)µb ≤ µa, (36)

where (35) follows from Jensen’s Inequality and (36) is a strict inequality
unless f∗ = 1 in the systematic-risk case.

In two otherwise identical populations—both of which have the same
marginal distribution for (xa, xb) but where (xa, xb) is systematic in one
and idiosyncratic in the other—the idiosyncratic-risk population will grow
at least as fast, and typically faster. This holds despite the fact that the
expected number of offspring (µa, µb) is the same in both populations, and
is driven by two distinct factors: Jensen’s Inequality and the possibility of
randomizing behavior in the systematic-risk case. The former is the same
mechanism at work in generating risk aversion (see Section 5.2 and footnote
19); an IID cross-section of individuals is able to approximate a “riskless”
rate of growth for large populations because the Law of Large Numbers
applies within a single generation, which is not the case for a population
with systematic risk. The latter is simply a consequence of the fact that
in populations where randomizing behavior is growth-optimal, a fraction of
the population selects the lower-expected-value choice, hence this population
will, by definition, grow at a slower rate than the idiosyncratic-risk popula-
tion in which every individual selects the higher-expected-value choice.

To develop an appreciation for the magnitude of these effects, consider
the case of exact probability matching in Section 4.1, in which f∗ = p where p

is the probability of state 1 in (11), and without loss of generality, let p > 1/2.
The ratio of the geometric-average growth rates of the idiosyncratic and
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systematic cases is given by:(
nf∗=1

T

nf∗=p
T

)1/T
a=

mp

mpp(1 − p)1−p
=
(

p

1 − p

)1−p

. (37)

For p = 0.6, this ratio is 1.176, implying that the geometric-average
growth rate of the idiosyncratic-risk population is 17.6% greater than the
systematic-risk population. While this may seem small, it implies that after
50 generations, the population size in the idiosyncratic-risk case will be
approximately 3,325 times that of the systematic-risk case.

6.2. The general case

We now consider the general case in which the random mechanism deter-
mining fecundity contains both systematic and idiosyncratic components.
Denote by xf

i the random number of offspring produced by individual i, and
now suppose that:

xf
i = If

i xa,i + (1 − If
i )xb,i, If

i ≡
{

1 with probability f

0 with probability 1 − f,
(38)

xk,i = yk,i + zk, k = a, b, (39)

where:

(A2′′) (ya,i, yb,i) is independently and identically distributed across
individuals and over time, and zk is independently and identically
distributed over time and identical across individuals in the same
generation.

In Assumption (A2′′), the idiosyncratic component (ya,i, yb,i) is indepen-
dently and identically distributed across individuals as well as across time,
whereas the systematic component zk is the same across individuals but
independently and identically distributed across time, and If

i are the same
Bernoulli 0/1 random variables summarizing the behavior of individual i as
defined in Section 3.2.

Given that If
i are independently and identically distributed across the

population of individuals of type f , we have the following expression for the
total number of offspring nf

t across all type-f individuals in generation t:

nf
t =

nf
t−1∑

i=1

xf
i,t =

nf
t−1∑

i=1

If
i (ya,i + za) +

nf
t−1∑

i=1

(1 − If
i )(yb,i + zb) (40)

p
= nf

t−1( f(µa + za) + (1 − f)(µb + zb)), µk ≡ E[yk,i], k = a, b. (41)
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Note that (41) is a combination of (3) and (29), containing both stochastic
and nonstochastic components, which reflects the impact of the system-
atic and idiosyncratic components in reproduction. This implies that as T

increases without bound, the geometric-average growth rate of the popula-
tion of type-f individuals is well-approximated by:

(nf
T )1/T p

= exp(E log(f(µa + za) + (1 − f)(µb + zb))), (42)

which follows from the Law of Large Numbers as before. From this expres-
sion, we see that the value of f that maximizes the population size nf

T is the
value that maximizes the expectation:

µ(f) ≡ E[log(f(µa + za) + (1 − f)(µb + zb))], (43)

which is virtually identical to the systematic case (6), the only difference
coming from the shift in mean µk from the idiosyncratic component yk,i. We
then have:

Proposition 7. Under Assumptions (A1) and (A2′′), the growth-optimal
behavior f∗ is given by:

f∗ =




1 if E[wa/wb] > 1 and E[wb/wa] < 1

solution to (45) if E[wa/wb] ≥ 1 and E[wb/wa] ≥ 1

0 if E[wa/wb] < 1 and E[wb/wa] > 1,

(44)

where f∗ is defined implicitly in the second case of (44) by:

0 = E
[

wa − wb

f∗wa + (1 − f∗)wb

]
, (45)

and the expectations in (5)–(8) are with respect to the joint distribution
Φ(wa, wb), where

wk ≡ µk + zk, k = a, b. (46)

Proposition 7 shows that the general case in which an individual’s action
leads to random offspring with idiosyncratic and systematic components is
mathematically equivalent to the systematic case with an additional shift in
mean from the idiosyncratic component.

Our comparison of systematic and idiosyncratic environmental risk yields
an interesting implication for populations in which the environment is
heterogeneous. Consider an environment that consists of several distinct
regions, some with idiosyncratic risk and others with systematic risk, and
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suppose that these regions are initially populated uniformly, i.e., all pos-
sible behaviors f ∈ [0, 1] are represented within each region. Over time,
the regions that will reproduce most rapidly are those with the greatest
proportion of idiosyncratic risk. This effect may give the appearance of indi-
viduals “seeking out” environmental conditions and niches in which the risks
are more idiosyncratic, but is, of course, merely a consequence of Jensen’s
Inequality and requires no self-awareness, volition, or intelligence.

The differences across regions may also be interpreted as yet another
form of group selection (Wynne-Edwards, 1962; Sober and Wilson, 1998),
in which groups defined by regions of idiosyncratic risk are favored. As in
the case of Proposition 1, it is the environment—specifically, the type of
reproductive risk—that determines the definition of the group on which
natural selection operates.

This result also provides an intriguing normative implication: to the
extent that survival is the objective and the future environment is uncer-
tain, policies that lead to greater idiosyncratic fecundity such as bio-diversity
may be desirable, leading to improvements in population growth rates by
f∗µa + (1 − f∗)µb.

7. Qualifications and Extensions

The link between behavior and reproductive success in a binary choice model
is the key to an evolutionary explanation for several commonly observed
behaviors in many animal species. While risk aversion, loss aversion, proba-
bility matching, and more general forms of randomizing behavior may seem
sub-optimal for the individual, these behaviors persist over time and across
many species precisely because they are optimal from a population per-
spective. Moreover, as environmental conditions change, the growth-optimal
behavior may also change in response to new selective pressures, hence the
inexplicably erratic actions of certain species may well be adaptive rather
than simply irrational.

These considerations may seem more relevant for the foraging behavior
of ants and bees than for human challenges such as investing in the stock
market. After all, most decisions we face each day have little to do with
our reproductive success, hence the relevance of f∗ for economic and social
behavior may be questioned. The answer lies in the degree to which evolu-
tionary pressures have any bearing on behavior, which is summarized by the
specification of Φ(xa, xb). For example, if the choice between a and b has no
impact on fecundity, e.g., monetary prizes that are small in comparison to an
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individual’s net worth, then xa and xb will be statistically identical because
either choice leaves the individual with the same reproductive prospects. In
this case, the bivariate distribution Φ(xa, xb) reduces to a univariate dis-
tribution Φ(x), natural selection is indifferent to the choice between a and
b, and f∗ is indeterminate. Therefore, whether f∗ is applicable to a given
context is fully captured by the relation between the individuals’ behaviors
and their impact on reproductive success, i.e., Φ.

One concrete illustration of how Φ plays this role is the case of loss
aversion. When the dollar amounts offered to subjects in the standard loss-
aversion experiments are too low, loss aversion is not observed (see foot-
note 20). This result can be easily understood in the context of Φ: when
the stakes are high, the outcomes have measurable impact on reproductive
fitness (broadly defined), hence one aspect of loss aversion may be observed
(f∗ = 1). But when the stakes are too low, the implications of both choices
for fitness are identical, hence the growth-optimal behavior has nothing to
say about the outcome of the experiment.

It should be emphasized that the behaviors derived in our simple frame-
work are primitive, both conceptually and from an evolutionary perspective.
We have purposefully abstracted from more realistic aspects of biology and
behavior, such as sexual reproduction, random mutations, neuroplasticity,
learning, communication, and strategic behavior, to focus on those behav-
iors that are primordial and common to most living organisms. By definition,
those common behaviors must confer significant advantages in the face of
stochastic environmental conditions, otherwise they would not have survived
over time and become so widespread within and across species.

Of course, more complex behaviors will arise as new species emerge
and evolve. Although the specific biological manifestations of behavior are
beyond the scope of our analysis, recent imaging and neurophysiologi-
cal studies of decision making under uncertainty in humans and primates
(Breiter et al., 2001; Smith et al., 2002; Gold and Shadlen, 2007; Yang
and Shadlen, 2007; Fehr and Camerer, 2007; Spitzer et al., 2007; Rangel
et al., 2008; Bossaerts, 2009; Resulaj et al., 2009; Wunderlich et al., 2009;
Hare et al., 2010), including studies of loss aversion (Kuhnen and Knut-
son, 2005; De Martino et al., 2006; Tom et al., 2007), are beginning to
identify the neural mechanisms involved in these adaptations. From these
studies, it is not difficult to see how sensory inputs, memory, and other
neural substrates can yield a much greater variety of behaviors from which
Nature selects the most advantageous, including the ability to avoid proba-
bility matching altogether (Shanks et al., 2002).
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To see how such mechanisms might have arisen through the forces of
natural selection, our simple binary choice model can easily be extended to
allow for sexual reproduction, random mutations, and an arbitrary number
n of possible actions, each with its own implications for the number of off-
spring, and these actions can, in turn, depend on a vector of auxiliary “state
variables” Z. This more complex framework can generate considerably more
sophisticated types of behavior, including learning, memory and, ultimately,
the emergence of intelligence. We are currently exploring such extensions,
however, economists have implicitly incorporated these more sophisticated
decision-making mechanisms through utility theory (Robson, 1996a; 2001a;
2001b; Grafen, 1999; Bernheim and Rangel, 2009) and have argued con-
vincingly that utility functions are also shaped by the pressures of natural
selection (Hansson and Stuart, 1990; Rogers, 1994; Robson, 1996b; Curry,
2001; Samuelson, 2001; Robson and Samuelson, 2007; 2009; 2010). Our cur-
rent framework may be viewed as a bridge between the higher-level utility-
based models of human behavior and the more primitive decision-making
components that we share with other animal species.

8. Conclusion

The evolutionary origin of behavior has important implications for eco-
nomics, not only in resolving the efficient-markets/behavioral-finance debate
but also in providing a broader framework in which conflicts between ratio-
nality and human behavior can be resolved in an intellectually consistent
manner. Specifically, much of neoclassical economic theory is devoted to
deriving the aggregate implications of individually optimal behavior, i.e.,
maximization of expected utility or profits, subject to budget or produc-
tion constraints. By documenting departures from individual rationality,
behavioral critics argue that rational expectations models are invalid and
irrelevant. Both perspectives make valid points but are incomplete.

Animal behavior is, in fact, the outcome of multiple decision-making
faculties—in many cases involving different neural substrates—that each
species has developed through the course of evolution. What economists
consider to be individually rational behavior is likely to emanate from the
prefrontal cortex, a relatively new component of the brain on the evolution-
ary timescale and one that exists only in Homo sapiens and certain great
apes. However, the human brain also contains other components, such as the
amygdala, a considerably older structure that is responsible for the “fight-or-
flight” response. Faced with life-threatening circumstances, even the most
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disciplined individual may not be able to engage in individually rational
behavior thanks to adaptive “hard-wired” neural mechanisms that conferred
survival benefits to the species (and not necessarily to any given individual).
Our analysis of idiosyncratic versus systematic shocks to the number of off-
spring provides an explanation for these apparent contradictions in behavior:
in the face of systematic factors in fecundity, growth-optimal behavior may
differ from individually optimal behavior; in the presence of purely idiosyn-
cratic fecundity, the two types of behavior converge.

Our framework may be useful in differentiating primitive behaviors from
more refined decision-making faculties, providing a clearer map of the bound-
aries of rational economic theory versus instinctive behavior. For example,
our results show that loss aversion is not a stable phenomenon, but depends
on the relation between incremental risks and total net worth. As aggregate
wealth in the economy declines, loss-aversive behavior is likely to be more
prevalent in the population, but during periods of prosperity, other behaviors
will emerge. A better understanding of this pattern may allow consumers,
investors, and policymakers to manage their risks more effectively.

While species with more highly developed nervous systems exhibit
greater behavioral variation, even in these cases, primitive behaviors are
still likely to be available, if not always chosen. We conjecture that such
behaviors are most readily actuated under conditions similar to those of
our binary choice model, namely, when outcomes are significant enough to
impact reproductive fitness, broadly defined, and the effects of other vari-
ables on fitness is relatively small. These primitive behaviors may also be
the basis of more modern adaptations such as boredom, thrill-seeking behav-
ior, rebellion, innovation, and most recently, financial market bubbles and
crashes.

From an evolutionary perspective, financial markets are neither efficient
nor irrational—they are merely adaptive (Farmer and Lo, 1999; Lo, 2004,
2005). In short, the behaviors derived in our evolutionary framework may
well be the “animal spirits” that Keynes (Keynes, 1936) singled out seven
decades ago, and which are apparently still a force to be reckoned with today.
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Appendix A

In this Appendix, we provide proofs for the main results of the paper and
the less obvious corollaries. Before doing so, we present a brief summary of
the basic properties of stochastic convergence that are used throughout our
analysis, (see Serfling, 1980, for further details).

We begin with formal definitions of convergence in probability and
distribution:

Definition A.1. A sequence of random variables {Xn} is said to converge
in probability to X if and only if for any ε > 0:

lim
n→∞Prob(|Xn − X| > ε) = 0, (A.1)

and we denote this type of convergence by the expressions:

plim
n→∞

Xn = X or Xn
p→ X. (A.2)

If two sequences of random variables {Xn} and {Yn} satisfy the relation
Xn − Yn

p→ 0, they are said to be “equal in probability” and we denote this
relation as Xn

p
= Yn. Under this definition, we can write plimn→∞ Xn = X

as Xn
p
= X.

Definition A.2. A sequence of random variables {Xn} with distribution
functions {Fn(x)} is said to converge in distribution to X with distribution
function F (x) if and only if:

lim
n→∞Fn(x) = F (x) (A.3)

for each continuity point x of F (·), and we denote this type of convergence
by the expression:

Xn
d→ X. (A.4)

These notions of convergence satisfy the following properties:
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Proposition A.1. If Xn
p→ X,Yn

p→ Y, and Zn
d→ Z, then:

Xn + Yn
p→ X + Y (A.5)

XnYn
p→ XY (A.6)

g(Xn)
p→ g(X), for any g(·) continuous at X. (A.7)

If X is a finite constant, then:

Xn + Zn
d→ X + Z (A.8)

XnZn
d→ XZ (A.9)

Zn/Xn
d→ Z/X, if X �= 0. (A.10)

A.1. Proof of Proposition 1

This follows from the first and second derivatives of (6). Because the second
derivative is strictly negative, there is exactly one maximum value obtained
in the interval [0, 1]. The values of the first derivative of µ(f) at the endpoints
are given by:

µ′(0) = E[xa/xb] − 1, µ′(1) = 1 − E[xb/xa]. (A.11)

If µ′(0) and µ′(1) are both positive or both negative, then µ(f) increases
or decreases, respectively, throughout the interval, and the maximum value
is attained at f = 1 or f = 0, respectively. Otherwise, f = f∗ is the unique
point in the interval for which µ′(f) = 0, where f∗ is defined in (8), and it
is at this point that µ(f) attains its maximum value. The expression (7)
summarizes the results of these observations for the various possible values
of E[xa/xb] and E[xb/xa]. Note that the case E[xa/xb] ≤ 1 and E[xb/xa] ≤ 1
is not considered because this set of inequalities implies that µ′(0) ≤ 0 and
µ′(1) ≥ 0, which is impossible since µ′′(f) is strictly negative.

A.2. Proof of Corollary 1

The Kolmogorov Law of Large Numbers (Serfling, 1980, Ch. 1.8) implies that
T−1 log nf

T converges almost surely to its expectation µ(f), hence the expo-
nential of the former converges almost surely to the exponential of the latter
(see White, 1984, Proposition 2.11). Note that almost-sure convergence is
stronger than convergence in probability, but we use the latter concept in
this and later results in anticipation of generalizations in which {xa,t, xb,t}
are not necessarily independently and identically distributed over time. As
long as {xa,t, xb,t} is stationary and ergodic, a Weak Law of Large Numbers
applies, implying convergence in probability (White, 1984, Ch. 5).
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The second part of the corollary follows from the fact that

(nf
T )1/T = exp

(
T−1

T∑
t=1

log(fxa,t + (1−f)xb,t)
)

p
= exp(µ(f)) (A.12)

(
nf ′

T

nf∗
T

)1/T
p
= exp((µ(f ′) − µ(f∗))) → 0, (A.13)

where the equality in probability in (A.12) follows from the Kolmogorov
Law of Large Numbers and the continuity of the exponential function and
(A.13) follows from applying Proposition A.1 to the ratio (nf ′

T )1/T /(nf∗
T )1/T

and the fact that µ(f ′) < µ(f∗) for any f ′ �= f∗ due to the optimality of f∗.

A.3. Proof of Proposition 2

This result follows directly from the Lindeberg-Levy central limit theory
applied to T−1 log nf

T (Serfling, 1980, Ch. 1.9).

A.4. Proof of Proposition 3

This result follows from the fact that the expectation (6) is given by:

µ(f) = p log(fca1 + (1 − f)cb1) + q log(fca2 + (1 − f)cb2) (A.14)

and taking the derivative of this function and solving for µ′(f) = 0 yields
the unique solution f =f∗, where f∗ is as defined in the second case of (14).
Whenever this value of f∗ lies in the interval [0, 1], it is the optimal value
of f . Otherwise, analysis of the sign of the first derivative of µ(f) at each
endpoint of the interval [0, 1] shows that the optimal value f∗ is either 0 or
1 as described in the first and third cases of (14).

A.5. Proof of Corollary 2

Observe that the intermediate expression for f∗ in (14) can be rewritten as:

f∗ = p + p

(
r2

1 − r2

)
+ q

(
1

1 − r1

)
.

The second term on the right is O(r2), and the third term on the right is
O(1/r1).

A.6. Proof of Proposition 4

In particular, because an individual’s expected number of offspring E[xi]:

E[xi] = p(fca1 + (1 − f)cb1) + q(fca2 + (1 − f)cb2) (A.15)
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is a monotone function of f , an individual seeking to maximize E[xi] will
select f to be 0 or 1, depending on which of these two extremes yields a
higher expectation, as specified in (17).

A.7. Proof of Proposition 5

If c(w) is twice continuously differentiable, then the derivative of c(w) is
everywhere non-negative because of assumption (A3) and tends toward zero
as w becomes sufficiently large or sufficiently small because of assump-
tions (A4) and (A5). It must also be positive in some region so that c(w)
increases from zero to a positive number. As a result, the derivative of c(w)
is increasing for sufficiently small values of w and decreasing for sufficiently
large values, which, in turn, implies that c̃(w) is concave for sufficiently large
w and convex for sufficiently small w.

If c(w) is not continuously differentiable, then pick any two values w′
1

and w′
2 such that c(w′

1) < c(w′
2) and c(w) is not linear and increasing in

a neighborhood of either point. (It must be possible to pick such points,
because if not, c(w) would always be linear and increasing as w becomes
small or large without bound, and so either assumption (A4) or (A5) would
necessarily be violated.) Consider the segment connecting the point on the
graph of c(w) at w = w′

1 to the point at w = w′
2, and let w1 be the smallest

value of w greater than w′
1 at which the segment intersects the graph, and

let w2 be the largest value of w less than w′
2 at which the segment intersects

the graph. By construction, w′
1 < w1 ≤ w2 < w′

2, and w1 satisfies (25) for
all w ≤ w′

1, and w2 satisfies (26) for all w ≥ w′
2.

A.8. Proof of Corollary 4

It was shown in Section 5.1 that the growth-optimal behavior is to take the
risky bet, to randomize, or to take the safe bet, according to whether cb is
in [ca1, c0], [c0, cp], or [cp, ca2], respectively. The corollary follows if these c

values are transformed into w values via the function c−1(·), and the fact
that c−1(cp) < wp follows because c(w) is concave throughout the interval
[wa1, wa2].

A.9. Proof of Corollary 5

As with the proof of Corollary 4, we note that the growth-optimal behavior
is to take the risky bet, to randomize, or to take the safe bet, according to
whether c′b is in [c′a1, c

′
0], [c′0, c

′
p], or [c′p, c′a2], respectively. These values can be
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transformed into w values via the function c−1(·), and the fact that c−1(c′p) >

w′
p follows because c(w) is concave throughout the interval [w′

a1, w
′
a2]. If c(w)

is invertible in this region, and if 1/c(w) is concave throughout this region
as well, then

1
c′0

=
p

c′a1

+
q

c′a2

≤ 1
c(w′

p)
.

Taking reciprocals of this inequality and applying the function c−1, we have
c−1(c′0) ≥ w′

p. Therefore, the interval [w′
a1, c

−1(c′0)], which is the interval for
which the risky choice B′ is always optimal, contains the point w′

p. As a
result, the final assertion of the corollary follows.
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