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Akey result of the capital asset pricing model (CAPM) is that the market portfolio—the portfolio of all
assets in which each asset’s weight is proportional to its total market capitalization—lies on the mean-

variance-efficient frontier, the set of portfolios having mean-variance characteristics that cannot be improved
upon. Therefore, the CAPM cannot be consistent with efficient frontiers for which every frontier portfolio has
at least one negative weight or short position. We call such efficient frontiers “impossible,” and show that
impossible frontiers are difficult to avoid. In particular, as the number of assets, n, grows, we prove that the
probability that a generically chosen frontier is impossible tends to one at a geometric rate. In fact, for one
natural class of distributions, nearly one-eighth of all assets on a frontier is expected to have negative weights for
every portfolio on the frontier. We also show that the expected minimum amount of short selling across frontier
portfolios grows linearly with n, and even when short sales are constrained to some finite level, an impossible
frontier remains impossible. Using daily and monthly U.S. stock returns, we document the impossibility of
efficient frontiers in the data.
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1. Introduction
A cornerstone of modern portfolio management is the
“efficient frontier” of mean-variance analysis: the set
of portfolios for which the lowest variance possible is
attained for a given level of expected return, or the
highest possible expected return is attained for a given
level of variance. The main thrust of the capital asset
pricing model (CAPM) is that the market portfolio—
the portfolio of all assets in which each asset’s weight
is proportional to its total market capitalization—must
lie somewhere on the efficient frontier. Because, by
definition, every component of the market portfolio
has a nonnegative weight (since its market capitaliza-
tion must be nonnegative), we would expect at least
one portfolio on the efficient frontier to have this prop-
erty. If, for a given a set of asset-return parameters
(means, variances, and covariances), the correspond-
ing efficient frontier does not have any such portfo-
lio, we call this an “impossible frontier” for obvious
reasons.
In this paper, we show that as the number of

assets grows large, nearly all efficient frontiers are
impossible.
Specifically, for any arbitrary set of expected returns

and for a randomly chosen covariance matrix, we
show that the probability that the resulting fron-
tier is impossible approaches one as the number of

assets increases without bound. This result depends,
of course, on the specific distribution from which
we draw the covariance matrix; we consider two
classes: the uniform distribution (Haar measure), and
distributions centered around linear factor models
such as the CAPM and Ross’s (1976) arbitrage pric-
ing theory (APT). For both classes of distributions,
mean-variance-efficient frontiers are almost surely
impossible.
This remarkable result is not an artifact of patho-

logical parameters, except in the two-asset case, but is
a generic property of mean-variance-efficient portfo-
lios. For typical parameter values, every portfolio on
the efficient frontier will contain at least one short
position, i.e., a negative weight. This implies that
such an efficient frontier cannot be consistent with a
CAPM equilibrium in which every investor holds the
tangency portfolio, for such an equilibrium requires
all weights to be positive for that portfolio. Alter-
natively, our impossibility result implies that the set
of expected-return vectors and covariance matrices,
�����, that are consistent with a CAPM equilibrium is
extremely small—in fact, measure zero in the limit—
hence we should not expect typical empirical esti-
mates of ����� to yield plausible portfolios from the
CAPM perspective unless the CAPM is literally true
and estimation error is negligible.
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Our results provide one explanation for the skep-
ticism that most long-only portfolio managers have
for standard mean-variance optimization. From their
perspective, an impossible frontier is truly impossible
for them to implement. Moreover, it is well known
that the output of standard portfolio optimizer yields
weights that must be constrained, but until now,
the nonnegativity restriction that has become second
nature to practitioners was thought to be a conse-
quence of estimation error. The results in our paper
show that even in the ideal case in which the means
and covariance matrix of asset returns are known
with perfect certainty, the efficient frontier will almost
always contain negative weights. To the extent that
estimation error generates means and covariances that
deviate from the CAPM, such sampling variation will
only exacerbate the problem, making it more likely
that the sample efficient frontier is impossible. Our
impossibility results may also provide a partial expla-
nation for the recent popularity of so-called “active
extension” strategies such as “130/30” portfolios in
which a limited amount of short selling is permitted.
We begin in §2 with a brief review of the litera-

ture, and in §3 we derive analytical results for the
two- and three-asset cases to build intuition and moti-
vate our more general results. The main results of
this paper are contained in §4, where we propose
two classes of probability measures over the space of
all possible covariance matrices and show that under
both of these classes of measures, impossible frontiers
become the rule, not the exception, as the number of
assets increases without bound. We also show that
the expected minimum amount of short selling across
frontier portfolios grows linearly with n, and even
when short sales are constrained to some finite level,
an impossible frontier remains impossible. Given the
importance of the CAPM, in §5 we examine the lin-
ear one-factor return-generating model in more detail,
and show how to construct a covariance matrix that
does not yield an impossible tangency portfolio. In §6,
we provide an empirical illustration of our theoretical
findings using daily and monthly returns for a subset
of S&P 500 stocks, and show that the usual sample
estimators of ����� do yield impossible frontiers. We
conclude in §7 with a discussion of the theoretical and
practical significance of our results.

2. Literature Review
Any review of the mean-variance portfolio selection
literature must begin with Markowitz (1952), who
first introduced this powerful framework to the eco-
nomics literature. Building on the Markowitz mean-
variance framework, Tobin (1958), Sharpe (1964), and
Lintner (1965) derived the equilibrium implications
under the assumption that all investors held mean-
variance-optimal or “efficient” portfolios, culminating

in the “capital market line,” the line connecting the
risk-free rate on the expected-return axis with the
tangency portfolio on the efficient frontier in mean–
standard deviation space.
The role of short sales in mean-variance analysis

has also been considered by several authors. In fact,
Markowitz (1959, p. 132) recognized the importance of
implementing constraints on portfolio weights, one of
which was a nonnegativity or short-sales constraint.
However, Lintner (1965) was perhaps the first to study
the impact of short sales on capital market equi-
librium, deriving alternative equilibria under short-
sales prohibitions as well as short-sales constraints.
Lintner concluded that investors would not engage
in short sales in equilibrium because of the Tobin
separation theorem, i.e., all investors are indifferent
between holding portfolios of all assets and portfolios
of just two funds: the riskless asset and the tangency
portfolio.
The importance of the mean-variance efficiency of

the market portfolio was recognized early on by
many authors, who initiated a series of debates on
the testable implications of the CAPM. In particu-
lar, Roll (1977), Rudd (1977), Roll and Ross (1977),
Green (1986), Green and Hollifield (1992), and Best
and Grauer (1985, 1992) all acknowledged the poten-
tial incompatibility of an arbitrary set of means and
covariances with positive weights for frontier port-
folios. Roll (1977) and Roll and Ross (1977) present
qualitative arguments for frontier portfolios to have
positive weights, and Rudd (1977) corrects and quan-
tifies some of those arguments. Using the dual of
the standard mean-variance quadratic optimization
problem, Green (1986) derives a fascinating neces-
sary and sufficient condition for the efficient fron-
tier to be impossible—the existence of a nontrivial
zero-expected-return arbitrage portfolio (a portfolio
with weights that sum to zero) that has nonzero cor-
relation with all assets. Green and Hollifield (1992)
derive conditions under which frontier portfolios will
be well diversified, meaning they contain no extreme
weights, and argue that extreme weights are likely
in the presence of a single dominant factor in asset
returns. Jagannathan and Ma (2003) show that, despite
this fact, portfolios with nonnegativity constraints
often perform better than unconstrained counterparts
because the constraints reduce the impact of estima-
tion error. And given a positive vector of market
weights and a covariance matrix, Best and Grauer
(1985) derive the restrictions on the vector of expected
returns that imply that the given vector of market
weights is an efficient portfolio.
But the most relevant paper for our purposes is Best

and Grauer (1992). In addition to providing conditions
for all frontier portfolios to have positive weights,
they derive a beautiful result: if a frontier contains
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portfolios with positive weights, they all lie on a con-
tinuous segment of the frontier! Using this fact, they
show that as the number of assets increases with-
out bound, and assuming that the CAPM holds (so
that the vector of expected returns and the covariance
matrix is consistent with the mean-variance efficiency
of the vector of market weights), the line segment
of frontier portfolios with positive weights converges
to a single point under certain conditions. Given
the implausibility of these conditions, and the sen-
sitivity of frontier portfolios to small perturbations
in the vector of expected returns (documented in
Best and Grauer 1991a, b), they argue that frontiers
with all positive weights are highly unlikely in prac-
tice. Our results confirm this intuition, but without
any restrictions whatsoever on the vector of expected
returns.
More recently, Markowitz (2005, p. 17) argued that

empirical deviations from the CAPM are not sur-
prising in light of the counterfactual assumptions on
which the CAPM is based. In particular, he observes
that “[w]hen one clearly unrealistic assumption of the
capital asset pricing model is replaced by a real-world
version, some of the dramatic CAPM conclusions no
longer follow.” An example is the fact that unlimited
borrowing and lending at identical yields is not pos-
sible in practice, and this limitation implies that the
market portfolio need not be mean-variance efficient
in equilibrium.
Markowitz’s (2005) caveats are well taken, but the

results of our paper are considerably stronger—we
show that even if all the assumptions of the CAPM
are true, the market portfolio need not be mean-
variance efficient. Specifically, Markowitz (2005) states
the following assumptions:
(A1) Transaction costs and other illiquidities can be

ignored.
(A2) All investors hold mean-variance-efficient

portfolios.
(A3) All investors hold the same (correct) beliefs

about means, variances, and covariances of securities.
(A4) Every investor can lend all she or he has or

can borrow all she or he wants at the risk-free rate.
Markowitz (2005) then concludes that:
(C1) The market portfolio is a mean-variance-

efficient portfolio.
The results of §§3–5 show that there exist certain

combinations of means, variances, and covariances for
which every mean-variance-efficient portfolio contains
short positions, implying that none can be the market
portfolio. And as the number of assets grows with-
out bound, the likelihood of coming across a set of
parameter values with this characteristic approaches
certainty.

3. Some Examples of Impossible
Frontiers

We begin with some notation. Let � be the vector of
expected returns for n assets, and let � be the covari-
ance matrix of those returns.1 For a given level of
expected return, �o, the corresponding portfolio on
the efficient frontier is the vector �, which minimizes
the value of

�′�� subject to �′� = 1� �′� = �o� (1)

where � is a column vector of ones of the appropri-
ate length. The set of optimal � can be found using
the method of Lagrange multipliers (see, for example,
Merton 1972):

� =
{

�� � = BC

D

(
�o − B

C

)
��� − �g� + �g

for �o ≥ B

C

}
� (2)

where

A ≡ �′�−1�� B ≡ �′�−1��
C ≡ �′�−1�� D ≡ AC − B2�

(3)

and
�g ≡ �−1�/C� �� ≡ �−1�/B� (4)

Note that �g is the global minimum-variance portfo-
lio, and �� is the vector that maximizes the Sharpe
ratio relative to the risk-free rate of zero, i.e., �� max-
imizes the function �′�/

√
�′��.

The frontier starts at the expected return level
�o = B/C. In fact, we can compute minimum-variance
portfolios for values of �o less than B/C, but these
portfolios would lie on the “inefficient” branch of
the portfolio frontier, i.e., the portion of the frontier
for which the expected return is not maximized for a
given level of risk.
We call a frontier “impossible” with respect to the

ith component if the weight of the ith component at
each point on the frontier is negative. Clearly, a suffi-
cient condition for a frontier to be impossible is that
it be impossible for the ith asset, 1 ≤ i ≤ n. From (2),
we see that every point on an efficient frontier can be
written in the form

� = C

D

(
�o − B

C

)
�P + �g� (5)

where �P ≡ B�� − B�g . The values of C and D are
nonnegative by the Cauchy-Schwartz inequality, so

1 Throughout this paper, we maintain the following notational con-
ventions: (1) all vectors are column vectors unless otherwise indi-
cated; (2) matrix transposes are indicated by primes, hence �′ is
the transpose of �; and (3) vectors and matrices are always typeset
in boldface, i.e., X and � are scalars and X and � are vectors or
matrices.
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a frontier will be impossible with respect to the ith
asset exactly when �g and �P both have negative ith
components.
Our technique for proving that an efficient frontier

is impossible is to show that the ith elements of both
�g and �P are negative for some i. Using this method,
we can calculate a lower bound for the probability
that a generically chosen efficient frontier is impossi-
ble, as well as lower bounds for the expected num-
ber of negative weights of portfolios on an impossible
frontier and lower bounds on the expected amount of
total short sales at each point on the frontier.
In §3.1, we investigate the special case of n = 2

and find that certain frontiers are impossible, but only
under some rather unnatural conditions. However, in
§3.2, we show that when n = 3, a variety of frontiers
become impossible without any unnatural conditions.

3.1. The Two-Asset Case
For the case of n = 2 assets, we can characterize all sit-
uations in which a frontier will be impossible (proofs
are included in the appendix).

Proposition 1. For n = 2, let the assets be ordered so
that �1 < �2, let �i denote the risk of the ith asset, and
let 	 denote the correlation between the assets. The efficient
frontier is impossible if and only if

�2

�1
< 	�

Because 	 ≤ 1, the proposition implies that a nec-
essary condition for a frontier with two assets to be
impossible is that �2 < �1. Also, because the volatil-
ities are both nonnegative, it is also necessary that
	 > 0. Thus, for a frontier to be impossible, the asset
with higher expected return must also have lower
risk, and the two assets must be positively correlated.
In such a circumstance, it will be optimal to have
a short position in the low-return/high-risk asset at
every point on the efficient frontier.
This condition is unnatural because the lower

expected-return asset is strictly dominated by the
higher expected-return asset, given that the latter is
less risky than the former. Therefore, on purely eco-
nomic grounds, it is possible to rule out impossible
frontiers in the two-asset case. In the next section,
however, we show that with just one more asset, there
is no natural way to avoid impossible frontiers.

3.2. The Three-Asset Case
For n = 3 assets, we describe a class of mean returns,
variances, and covariances indexed by a parameter

 > 0 such that for sufficiently small values of 
,
the efficient frontier corresponding to the specified
parameters is impossible, and that the short-sale
amount throughout the frontier becomes arbitrarily

large as 
 approaches 0. Unlike the case of the con-
dition in Proposition 1, no dominance relation among
the assets is necessary; in fact, all three assets have
the same ratio of expected return to standard devia-
tion. After deriving the formal results for this class of
parameters, we provide a specific numerical example
and also indicate the range of values of 
 for which
frontiers in this class are impossible.
For each 0 < 
 < 1, let d = 1 − 
, and define the

following set of asset-return parameters:

� = �2

⎛
⎜⎜⎝

d

1

1/d

⎞
⎟⎟⎠ � � = �2

⎛
⎜⎜⎝

d

1

1/d

⎞
⎟⎟⎠ � and

� =

⎛
⎜⎜⎝

1 d d4

d 1 d

d4 d 1

⎞
⎟⎟⎠ �

(6)

where � is the vector of expected returns, � is the
vector of standard deviations, and � is the correla-
tion matrix. We assume that �2 > 0 and �2 > 0. The
ratio of expected return to standard deviation for each
asset is thus �2/�2. Also, the correlation between the
first and the second asset is positive and identical
to that between the second and third asset, whereas
the correlation between the first and third asset is
positive but somewhat smaller because d4 < d. We
prove below that the efficient frontiers corresponding
to the class of parameters described by (6) are impos-
sible for sufficiently small values of 
. Before deriv-
ing this result, however, we must confirm that the
correlation matrix specified in (6) is positive definite,
which is accomplished by the following lemma (see
the appendix for the proof):

Lemma 1. The correlation matrix � specified in (6) is
positive definite for all 0< 
 < 1.

With this lemma in hand, we now prove that fron-
tiers described in (6) are impossible when 
 is suffi-
ciently small.

Proposition 2. For sufficiently small values of 
, the
frontier corresponding to the parameters described in (6) is
impossible. Each frontier portfolio can be expressed as

� = � ��P + �g�

for � ≥ 0, where ��P = �12/B��P . There are values
0< �1 < �2 such that the weight of the second asset is neg-
ative for each portfolio in the range 0 ≤ � ≤ �2 and the
first asset is negative for each portfolio in the range � > �1.
Therefore, there is always at least one asset with a nega-
tive weight, and for values of � between �1 and �2, two
assets have negative weights. Moreover, each portfolio on
the frontier has a negative weight that is at least as large
as 1/�3
� + O�1�.
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This proposition demonstrates that impossible
frontiers can arise easily in the three-asset case,
and without imposing any unnatural conditions on
the asset-return parameters. In practice, numerical
computations show that frontiers corresponding to
the parameters in (6) become impossible whenever

 ≤ 0�317.
For concreteness, consider a numerical example

with the following parameter values: 
 = 0�2,
�2 = 12%, and �2 = 20%. In this case, we have

� =

⎛
⎜⎜⎝
0�096

0�120

0�150

⎞
⎟⎟⎠ � � =

⎛
⎜⎜⎝
0�160

0�200

0�250

⎞
⎟⎟⎠ � and

� =

⎛
⎜⎜⎝
1�0000 0�8000 0�4096

0�8000 1�0000 0�8000

0�4096 0�8000 1�0000

⎞
⎟⎟⎠�

The parametrization of the frontier described in
Proposition 2 takes the form

� = �

⎛
⎜⎜⎝

−2�6021

0�5204

2�0817

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

1�3553

−0�9104

0�5551

⎞
⎟⎟⎠�

The value of � for which the first coordinate of � is
zero is �1 = 0�5208, and the value of � for which the
second coordinate of � is zero is �2 = 1�7493. For val-
ues of � between 0 and �1, the weight of the second
asset is negative, and the weights of the other two
assets are positive. For values of � between �1 and �2,
the weights of both the first and second assets are
negative, and the weight of the third asset is positive.
Finally, for values of � greater than �2, the weight of
the first asset is negative, and the weights of the other
two assets are positive. Therefore, the efficient frontier
is impossible. Moreover, each portfolio on the frontier
has a total short-sale amount of at least −63�9% of the
total asset value.
The circumstances in which impossible frontiers can

arise in the case of three assets is not limited to just
those parameters described by (6). In fact, the effi-
cient frontier will continue to be impossible if the
values of the risk, return, and covariance parameters
are allowed to vary within a small neighborhood of
(6). In addition, many other three-asset examples of
impossible frontiers with empirically plausible param-
eters can be constructed. By increasing the number of
assets from two to three, the set of impossible frontiers
has grown significantly. In §4, we show that this is no
coincidence, and that as n increases without bound, an
arbitrarily chosen frontier is almost surely impossible.

4. The General Case
In this section, we consider the general case of an arbi-
trary number of n assets. Unfortunately, simple ana-
lytical results like those for the two- and three-asset
cases of §3 are not available for an arbitrary number
of assets (but see Green 1986; Best and Grauer 1985,
1992 for other useful characterizations of impossibil-
ity, including computationally explicit methods for
identifying impossible frontiers). Instead, we propose
to conduct the following thought experiment: for a
given vector � of expected returns and a randomly
selected covariance matrix �, what is the likelihood
that the resulting frontier is impossible? To compute
such a probability, we must, of course, propose a prob-
ability distribution for a covariance matrix, which is
not a straightforward exercise. Although distributions
of covariance matrices have been developed in the
statistics literature, e.g., the Wishart distribution, they
are sampling distributions of covariance-matrix esti-
mators applied to independently and identically dis-
tributed multivariate normal data (see Anderson 1984,
Chap. 7). Such distributions are highly parametric—
if multivariate normality does not hold, then neither
does the Wishart—and also do not necessarily capture
the randomness that we seek, i.e., the random draw-
ing of an arbitrary population covariance matrix from
the space of all possible covariance matrices. In par-
ticular, Wishart distributions are typically “centered”
at the estimated sample covariance matrix with multi-
variate tails that decline exponentially fast. This may
be a reasonable model of the randomness associated
with sampling variation, but seems less compelling
as a mechanism for drawing an arbitrary covariance
matrix at random.
Instead, we seek a more general distribution, such

as a uniform distribution over the space of all pos-
sible covariance matrices, i.e., the space of all �n × n�
symmetric positive-definite matrices with real ele-
ments. However, because this space is not compact,
a uniform distribution over this space will have infi-
nite mass. Nevertheless, in the same way that an
“improper prior” can be specified in Bayesian infer-
ence (see, e.g., Jeffreys 1961, pp. 180–181; Box and
Tiao 1973, p. 426), we can construct an “uninforma-
tive” distribution as a proxy for the uniform. We pro-
vide such a distribution for covariance matrices in
§4.1, which will allow us to gauge the probability that
a randomly selected covariance matrix gives rise to
an impossible frontier, yielding the conclusion that
impossible frontiers are almost certain to arise as the
number of assets increases without bound.
However, it may be argued that an uninforma-

tive distribution of covariance matrices will not yield
economically relevant draws because the resulting
covariance matrices lack the factor structure hypoth-
esized in the most popular asset-pricing models. We
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address this concern in §4.2 by introducing another
class of probability distributions centered around the
covariance matrices generated by linear factor-pricing
models such as the CAPM and APT, and derive lower
bounds on the probability that a frontier is impossible
if it is chosen randomly with respect to one of the dis-
tributions in this class. We show that this lower bound
also approaches unity as n grows without bound.
In §4.3, we calculate lower bounds on the expected

number of assets with respect to which a frontier will
be impossible, as well as estimates for the expected
minimum size of short positions across frontier port-
folios. We also find that an impossible frontier will
remain impossible even if constraints are placed on
the total amount of short selling allowed in any
portfolio.

4.1. Impossibility with a Uniform Prior
Without any prior information for what a covari-
ance matrix “should” look like, a plausible starting
point for generating a “randomly selected” covari-
ance matrix is to apply a uniform distribution over
the space of all real symmetric positive definite (n × n)
matrices. This problem is closely related to the invari-
ance principle in Bayesian statistical decision theory,
which states that “if two decision problems have the
same formal structure � � � , then the same decision rule
should be used in each problem” (Berger 1985, p. 390).
This principle depends critically on the absence of
prior information which, in turn, requires that the
prior distribution also be uninformative and “invari-
ant,” i.e., scale independent. To formalize this notion
of invariance, Berger (1985, Chap. 6.6, Definition 2)
defines a group structure on the set of transforma-
tions of the data, and then defines a parametric fam-
ily of probability measures to be invariant under this
group if the parameters are invariant across all actions
of the group. For example, under the group of scale
transformations

Y = gc�X� ≡ cX� (7)

the exponential density function

f �x � �� = �−1 exp�−x/��

is invariant because the density of Y is given by (see
Berger 1985, p. 394)

c−1f �y/c � �� = �c��−1 exp�−y/�c��� = f �y � c��� (8)

Of course, the principle of invariance is considerably
more general, and can be applied to arbitrary groups
defined on arbitrary collections of random variables.
Berger (1985, Chap. 6.6) shows that the prior distribu-
tion function associated with invariant decision rules
is given by Haar measure, an extension of the uni-
form distribution to more general settings. We apply

this same approach to define an uninformative prior
on the space of all �n × n� covariance matrices, which
we denote by �n.
For �n, the natural group of transformations to con-

sider is the general linear group GLn, the group of
all invertible linear transformations on Rn (or, equiv-
alently, the group defined by all invertible �n × n�
matrices). This is the multivariate analog of the mul-
tiplicative scale transformation (7), where we wish to
define invariance with respect to the matrix multi-
plication of a vector of n random asset returns r by
an arbitrary invertible matrix A, yielding Ar. If the
covariance matrix of r is �, then the covariance matrix
of Ar is A�A′; hence, we seek to construct an unin-
formative prior on �n that is invariant between � and
A�A′ for all invertible A. It turns out that Haar mea-
sure is the only measure satisfying this property.
More formally, Haar measure is the unique mea-

sure (up to a constant) that is invariant under the
natural action of the group GLn of invertible linear
transformations on Rn on the space of covariance
matrices. For G ∈ GLn, this action is defined by � 
→
G�G′ for � ∈�n, and any covariance matrix � can be
mapped to any other covariance matrix under some
such action. Thus, any such action takes a neighbor-
hood around a specified covariance matrix to a corre-
sponding neighborhood around any other covariance
matrix, and Haar measure assigns the same volume
to every such image of the original neighborhood. In
this sense, Haar measure behaves uniformly on all of
�n and represents an uninformative prior distribution
over all possible �n × n� covariance matrices. The fol-
lowing definition summarizes Haar measure on GLn

(see Jorgenson and Lang 2005 for further discussion).
Definition 1. Haar measure on �n is the measure,

n, that is invariant under transformations of the form
� 
→G�G′, for G ∈GLn. Thus, for any region S⊆�n,
Haar measure has the property that

n�S� = n�GSG′� (9)

for all G ∈ GLn. This measure is unique up to multi-
plication by a positive constant, and in terms of the
elements of the matrix � = ��i� j �, we have

dn��� = 1
�det�����n+1�/2

∏
i≤j

d�i� j � (10)

where d�i� j is the element of Euclidean measure.
Under Haar measure, the entire space �n has infi-

nite volume so we cannot scale by a constant to trans-
form Haar measure into a proper probability density.
Instead, we calculate the probability that a selected
frontier is impossible on cross sections of �n using
the probability density induced by Haar measure on
those cross sections. We first need to introduce a use-
ful system of coordinates on �n with respect to which
we can easily define our cross sections.



Brennan and Lo: Impossible Frontiers
Management Science 56(6), pp. 905–923, © 2010 INFORMS 911

Definition 2. Each matrix M ∈�n can be uniquely
expressed in terms of (partial) Iwasawa coordinates as
�X�W�V�, where W ∈ �2, V ∈ �n−2, and X ≡ �x1�x2�,
with x1�x2 ∈ Rn−2. The relationship between M and
�X�W�V� is defined by the formula

M =
(
I2 X′

0 In−2

)(
W 0

0 V

)(
I2 0

X In−2

)

=
(
W+X′VX X′V

VX V

)
� (11)

Moreover, each matrix W can be uniquely expressed
in terms of Iwasawa coordinates as �y�u�v�, where
u�v ∈R+ and y ∈R, according to the relationship

W =
(
1 y

0 1

)(
u 0

0 v

)(
1 0

y 1

)

=
(

u + y2v yv

yv v

)
� (12)

Finally, we can also express each matrix X in terms of
polar coordinates �r1� � � � � rn−2� �1� � � � � �n−2�, where ri ∈
R+ and �i ∈ S1 = �0�2��, using the relationships x1� i =
ri cos�i and x2� i = ri sin �i. Therefore, each M ∈�n can
be written in terms of coordinates

M= �r1� � � � � rn−2� �1� � � � � �n−2�y�u�v�V� (13)

so that the space �n can be viewed as the product

�n = �R+�n−2 × �S1�n−2 ×R×R+ ×R+ ×�n−2� (14)

Using the coordinate system of Definition 2, we
consider cross sections of �n that have fixed val-
ues for all coordinates except the �i. We write Z =
Z�r1� � � � � rn−2�y�u�v�V� for such a cross section with
specified fixed values of the coordinates r1� � � � � rn−2,
y, u, v, and V. This cross section is thus a product
of �n − 2� copies of S1, and the measure on this cross
section induced by Haar measure on �n is

dZ = 1
�2��n−2

d�1 · · ·d�n−2� (15)

The measure Z is therefore a proper probability dis-
tribution on the cross-sectional space Z; although
probabilities cannot be computed with respect to Haar
measure on all of �n, they can be computed with
respect to Z on each cross section Z of �n.
To calculate the probability that a covariance

matrix � gives rise to an impossible frontier, it is con-
venient first to change variables from � to M using
the correspondence

� =AMA′� (16)

where A = A�c1� � � � � cn� is the unique matrix in GLn

with columns defined by

Ae1 = c1�� Ae2 = c2�� and

Aej = cjej for 3≤ j ≤ n
(17)

for specified values of ci > 0, where ej is an �n × 1�-
vector with 0s in all entries except for a 1 in the jth
entry, j = 1� � � � �n. Haar measure is invariant under
this change of variables, so we can replace � with
M and use Haar measure on M as the basis for our
probability calculations. We calculate the probability
that a matrix � = AMA′ gives rise to an impossible
frontier for a matrix M in a cross section Z, where the
probability is calculated with respect to the distribu-
tion Z. In Theorem 1, we obtain a lower bound for
this probability of impossibility that depends only on
the parameter y in the specification of Z. However,
first we need a lemma that provides a useful test for
impossibility.

Lemma 2. For a frontier to be impossible with respect
to the ith coordinate, it is necessary and sufficient that

e′
i�

−1�<0 and e′
i�

−1�−
(

�′�−1�

�′�−1�

)
e′

i�
−1�<0� (18)

If � = AMA′ and i > 2, the conditions in (18) are equiv-
alent to

cos�i−2 > y sin �i−2 and sin �i−2 > 0� (19)

where M has coordinates as in Definition 2.

Theorem 1. Let M ∈ Z = Z�r1� � � � � rn−2�y�u�v�V�
be chosen randomly with respect to the distribution Z. The
probability pZ that the covariance matrix � =AMA′ gives
rise to an impossible frontier is bounded below as

pZ ≥ 1−
(
1− 1

2�
cot−1 y

)n−2

≥ 1−
(
1− 1

2��1+max�0�y��

)n−2

� (20)

This theorem shows that for any fixed value of y,
the probability that a covariance matrix in a cross sec-
tion Z gives rise to an impossible frontier tends to 1
geometrically as n grows.2 Moreover, if y is bounded

2 The intuition for this result is similar to the intuition for the fact
that the fraction of an n-dimensional unit sphere not lying in the
positive orthant tends to 1 geometrically with n. The sphere is
defined by n Euclidean variables subject to the condition that their
squares sum to 1. Under the uniform Haar measure on the sphere,
each of these n variables is independent of all of the others, and
each is equally likely to be positive or negative. Thus, the likelihood
that at least one is negative, so that a point is not in the positive
orthant, is 1 − 2−n. For the case of the probability distribution in
Theorem 1, each of the �n−2� variables �i is independent of all the
others, and there is a likelihood py , dependent only on y, that the
ith of these variables gives rise to a frontier that is impossible with
respect to the �i + 2�th coordinate. As a result, the probability that
the frontier is impossible with respect to at least one coordinate is
at least as great as 1− �1− py�

n−2.



Brennan and Lo: Impossible Frontiers
912 Management Science 56(6), pp. 905–923, © 2010 INFORMS

above by y+, the probability for any cross section
Z with such a y coordinate tends to 1 at least as
quickly as

pZ ≥ 1−
(
1− 1

2��1+max�0�y+��

)n−2

�

The following corollary extends the previous results
to yield a lower bound on the probability of impossi-
bility for probability densities on the entire space �n.

Corollary 1. Let � be any probability density on �n

that factors into a product of densities

� =
(n−2∏

i=1

�ri

)
×
(n−2∏

i=1

��i

)
× �y × �u × �v × �V� (21)

where the ��i
are uniform probability densities on S1, and the

other distributions are aribtrary distributions on the respec-
tive spaces ri ∈ R+, y ∈ R, u ∈ R+, v ∈ R+, and V ∈ �n−2.
Let � =AMA′ be an arbitrary covariance matrix, withA as
defined in (17), and with M chosen randomly in accordance
with the distribution �. The probability p that � gives rise
to a frontier that is impossible is bounded below by

p ≥ 1−
∫
R

(
1− 1

2��1+max�0�y��

)n−2

�y�y�� (22)

4.2. Impossibility with Linear-Factor Model Priors
Although the generality of Haar measure in represent-
ing the selection of an arbitrary covariance matrix is
compelling, some may consider it too general because
it does not differentiate among outcomes according to
their economic plausibility. In particular, Haar mea-
sure places the same probabilistic weight on covari-
ance matrices arising from quantum mechanics as it
does on those from economic models—there is noth-
ing intrinsic to Haar measure that incorporates eco-
nomic structure. Accordingly, one could argue that
Haar measure places too much weight on finan-
cially irrelevant covariance matrices. This argument is
debatable, not in the least because we do not usually
develop economic theories to yield specific implica-
tions for covariance matrices, and hence it is not clear
what “financially relevant” covariance matrices look
like.
However, there does exist an important class of

financial models that places restrictions on asset-
return covariance matrices, and that is the set of linear
factor models such as the CAPM and APT. If a linear
factor-pricing model holds, then a “typical” covari-
ance matrix drawn randomly from this economy will
have a different distribution than a Haar measure.
Accordingly, financial economists may prefer a more
informed prior when it comes to covariance matrices.
In this section, we introduce a class of probability

distributions based on covariance matrices motivated
by linear factor models such as the CAPM and APT,

and we calculate probabilities of impossibility with
respect to distributions in this class. The construction
of this class uses many of the techniques and nota-
tions developed in connection with our analysis of
Haar measure in §4.1, so our exposition will be less
detailed.
We start with T0 =T0����m��m� rf �, the covariance

matrix implied by a linear one-factor model for a cho-
sen value of the excess expected-return vector � and
for arbitrarily specified values of the excess expected
return on the market, �m, and the market volatility,
�m. The excess expected return values are defined
as the excess of the expected return values over the
risk-free rate, rf . Also, we assume for the moment
that there are no idiosyncratic components to asset
returns. The matrix T0 can be written

T0 = �2
m��′�

where � is the vector of “beta” values, � = �/�m

(recall that we have temporarily assumed no idiosyn-
cratic shocks).
To incorporate independent idiosyncratic risks,3

nonnegative amounts can be added to diagonal ele-
ments of T0, and the elements of the matrix may be
additionally adjusted to reflect deviations from the
CAPM. We define a family of such matrices,

� = � ����m��m� rf �

= �T= �2
m��′ +diag��� + 
��′� 
 ≥ 0��i ≥ 0��

and we define the subfamily �2 to be those matri-
ces in � with �1 = 0, �2 = 0, and �i > 0 for 3 ≤ i ≤ n.
The notation diag��� represents the diagonal matrix
with diagonal elements equal to the elements of the
vector �.
For any T ∈ �2, we can write T = AA′, where A =

A�c1� � � � � cn� is defined in (17), with c1 = 
1/2, c2 =
�m/�m, and ci = �1/2

i for 3 ≤ i ≤ n. We write covari-
ance matrices � in the form � = AMA′ for some
M ∈�n, and we consider probability distributions on
� defined in terms of probability distributions on M.
Because every � corresponds to a unique M under
this relationship, every probability distribution for �
can be realized in this way. Also, when M = In, we

3 Of course, if the CAPM were literally true, then the vector of
idiosyncratic risks 	 would have to satisfy the linear restriction
�′

m	 ≡ 0, where �m is the vector of market weights (in other words,
the random idiosyncratic shocks must sum to zero in each and
every realization, implying that their n-dimensional joint distri-
bution is, in fact, degenerate, and lies in an �n − 1�-dimensional
subspace). However, we are not assuming that the CAPM is true;
otherwise, by definition the efficient frontier cannot be impossible.
Instead, we are using the CAPM’s one-factor model as motivation
for constructing an alternative to Haar measure for the express
purpose of generating a “randomly chosen” covariance matrix that
may be more relevant for financial applications.
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have � = T, so distributions for � are “centered” on
the CAPM-based matrix T to the same extent that
distributions for M are centered on In. We can now
define a broad class of probability distributions for �
that are “centered” on CAPM-based matrices T ∈�2.
Definition 3. For c > 0, a distribution � on � ∈�n

is in the class ���2� c� if the corresponding distribu-
tion �M on M ∈ �n can be factored into a product of
distributions

� =
(n−2∏

i=1

�ri

)
×
(n−2∏

i=1

��i

)
× �y × �u × �v × �V� (23)

where the ��i
are uniform probability densities on

S1, where �y is bounded above by c e−y2 for y ≥ 0,
and where the other distributions are arbitrary distri-
butions on the respective spaces ri ∈ R+, u ∈ R+, v ∈
R+, and V ∈ �n−2. Here we use the notation of Defini-
tion 2 for the coordinates forM, and we use the corre-
spondence � = AMA′ for the relationship between �
andM.
We now turn to the central result of this section:

a lower bound for the probability of impossibility
that is uniform across all distributions in the class
���2� c�.

Theorem 2. For any given excess expected-return vec-
tor �, excess expected return on the market �m, market
volatility �m, and risk-free rate rf relative to which excess
returns are defined, let � be a probability distribution in
���2� c� = ���2����m��m� rf �� c� for a specified c > 0.
With respect to this distribution, the probability that a ran-
dom choice of � gives rise to an efficient frontier that is
impossible is bounded below by

PI ≥ 1−
(
6
7

)n−2

− 4c exp
(

−
(

n − 2
3�

)2/3)
� (24)

This lower bound holds uniformly across all � ∈���2� c�,
as well as across all choices of �, �m, �m, and rf . As n
increases without bound, the probability that a generically
chosen frontier is impossible tends to unity.

The remarkable generality of Theorem 2 raises
the question of how tight the lower bound can be,
especially given the fact that we have placed no
restrictions on the excess expected-return vector �.
Table 1 shows that even for the 50-asset case—a
relatively small number of assets for most financial
applications—the likelihood of an impossible frontier
is nearly certain.
It should come as no surprise that Theorem 2 can

easily be extended to the case in which returns sat-
isfy any linear k-factor model, k  n. In this case, the
factor �n − 2� in (24) is replaced by �n − k − 2�, and
some of the constants are slightly different, but the
asymptotic implications of the bound are identical.
As n increases without bound, the probability of an
impossible frontier approaches unity.

Table 1 Lower Bound for Probability of Impossible
Frontier with n Assets

n Lower bound

25 0�9059
50 0�9787
75 0�9920
100 0�9966

Note. This table shows the lower bound for the probability
that a randomly chosen n-asset covariance matrix yields
an impossible frontier under any measure � ∈���2�0�1�
over the space of all �n × n� symmetric positive-definite
covariance matrices with real elements.

4.3. Characterizing the Short Positions
In this section, we derive several additional results
about impossible frontiers. We determine the expected
number of the total number of assets n with respect to
which a generic frontier will be impossible, and derive
a lower bound for the expected sizes of short positions
across a generic frontier. We also generalize Theorem 2
to the case in which a constraint is placed on the total
size of short positions at each point on the frontier.

Theorem 3. For any given excess expected-return vec-
tor �, excess expected return on the market �m, market
volatility �m, and risk-free rate rf relative to which excess
returns are defined, let � be an arbitrary probability distri-
bution in ���2� c� =���2����m��m� rf �� c�. Under this
probability distribution, the expected number of the total
number of assets n with respect to which the frontier corre-
sponding to a random choice of � is impossible is bounded
below by

En ≥ c′�n − 2� (25)

for a positive constant c′ defined as

c′ ≡
∫
R

(
1

2��1+max�0�y��

)
�y�y�� (26)

which depends only on the factor �y of the probability dis-
tribution �. If �y is a normal distribution with unit vari-
ance, a numerical lower bound for En is �n − 2�/8.

This result follows from an estimate of the inte-
gral defining the expected value (see the appendix),
and shows that the number of assets requiring short
positions on a typical frontier grows linearly with the
number of assets.
We can also determine lower bounds for the aggre-

gate size of the short positions among efficient-
frontier portfolios. The following definition makes
this notion precise:
Definition 4. For 1 ≤ i ≤ n, let Si denote the infi-

mum of the short position in the ith asset, measured
as a fraction of the portfolio’s net asset value, where
the infimum is taken over all points on a given effi-
cient frontier. Let S denote the infimum of the aggre-
gate amount of short selling, where the infimum is
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also taken over all portfolios on a given efficient
frontier.
With this definition, we are able to derive a lower

bound on the magnitude of shorting among efficient-
frontier portfolios:

Theorem 4. For any given excess expected-return vec-
tor �, excess expected return on the market �m, market
volatility �m, and risk-free rate rf relative to which excess
returns are defined, let � be an arbitrary probability distri-
bution in ���2� c� = ���2����m��m� rf �� c�. Under �,
for 3≤ i ≤ n, the expected value of Si satisfies

E�Si� ≥ ci� (27)

where

ci ≡
1
2�

(∫ �

0
ri−2 �ri−2

)(∫ 0

−�
�1− y��y

)
� (28)

and �ri−2
and �y are as in Definition 3. Note that if all

the functions �ri−2
are identical, so that all the ci have a

common value c∗, then the expected value of S has the
following lower bound:

E�S� ≥ c∗�n − 2�� (29)

Finally, we consider the effect of imposing short-
sales constraints by first defining the concept of a con-
strained efficient frontier:
Definition 5. For b ≥ 0, a constrained efficient

frontier, �b, is the set of portfolio weight vectors that
provide maximum returns for given levels of volatil-
ity, subject to the condition that the total size of the
short positions in such weight vectors be no more
than a fraction b of the portfolio’s net asset value.
Such a constrained frontier is an impossible frontier
if every point on �b has a negative weight for at least
one asset.
Remarkably, imposing short-sales constraints does

not decrease the probability that a frontier is impossi-
ble, as the next result shows:

Theorem 5. Let � be an unconstrained efficient fron-
tier, and let �b be the corresponding constrained efficient
frontier for some b > 0. If � is an impossible frontier, then
�b is an impossible frontier as well.

Therefore, the probability that a constrained efficient
frontier, with b > 0, is impossible is at least as large as
the probability that an unconstrained efficient frontier
is impossible.

5. The One-Factor Model
Given the overwhelming importance of the CAPM to
financial theory and practice, we consider the special
case of the linear one-factor model that underlies the
CAPM. In particular, let the �n × 1�-vector of returns

of n assets be given by the following linear one-factor
model:

r= �rf + ��rm − rf � + 	� (30)

where rm is the stochastic market return, � is an �n×1�
constant vector, and 	 is an �n × 1� stochastic vector
of idiosyncratic shocks. We assume that the expected
value of 	 is zero, and we write 
 for its covariance
matrix.
Let �m and �m denote the expected return and stan-

dard deviation of rm, respectively. According to the
CAPM relation (30), the mean vector and covariance
matrix for asset returns, � and �, respectively, can be
written in terms of �m, �m, �, rf , and 
 as

� = �rf + ���m − rf � and � = ��′�2
m + 
� (31)

The tangency portfolio implied by the CAPM is
��, defined in (4) as �� ≡ �−1�/B. And under the
assumption that 
 is diagonal and � contains all
positive elements, it can be shown that the tangency
portfolio is, in fact, not impossible; i.e., it contains
no negative weights and may, therefore, be consistent
with capital market equilibrium in which the weights
are proportional to the market capitalizations of the
securities. In this section, we explore the impossibility
of the tangency portfolio for more general residual
covariance matrices 
 and with no constraints on �,
and find that, as before, impossibility is the rule, not
the exception as n increases without bound.
In §5.1, we introduce the techniques needed to char-

acterize impossible tangency portfolios, and in §5.2,
we derive a lower bound on the probability that a
randomly selected tangency portfolio is impossible. In
§5.3, we show how to construct the unique covariance
matrix that is consistent with a given vector of means
�, the risk-free rate rf , a set of market-capitalization
weights �m, and the CAPM equilibrium (i.e., where
those market weights correspond to those of the tan-
gency portfolio), and which is as “close” as possible
to a given covariance matrix �. In other words, we
derive the covariance matrix that is as close as possi-
ble to �, but that is also consistent with the CAPM.

5.1. Characterizing Impossible
Tangency Portfolios

As in §4, the key to characterizing impossible tan-
gency portfolios is the choice of coordinates in which
to express the covariance matrix, which will allow
us to focus on the portion of the matrix that is rele-
vant for impossibility. Any covariance matrix � can be
written in the form � =AMA′, where M is a positive-
definite symmetric matrix, and where A is the unique
matrix that takes e1 to � and ei to ei for 2 ≤ i ≤ n.4

4 Note that the definitions of A and M are slightly different here
than in §4.1, but we keep the same notation because these matrices
play the same role as before.
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Also, using techniques similar to those in §4.1, M can
be expressed in terms of partial Iwasawa coordinates
as

M =
(

w 0

0 V

)[(
1 0

x In−1

)]

=
(

w + x′Vx x′V

Vx V

)
� (32)

where w ∈R+, x ∈Rn−1, and V is a covariance matrix
of dimension �n−1�× �n−1�. Here we have used the
notation G�H� for H′GH.

In these coordinates, the portfolio �� can be
expressed simply as

���i =
⎧⎨
⎩

�1+�2x1+···+�nxn−1�/d for i=1�

−�1xi−1/d for 2≤ i≤n�
(33)

d ≡ 1+��2−�1�x1+···+��n −�1�xn−1�

Therefore, �� is completely determined by x and �.
This allows us to characterize the impossibility of the
tangency portfolio via the following proposition:

Proposition 3. The tangency portfolio, ��, implied by
the CAPM is impossible if and only if any one of the fol-
lowing three conditions holds: (i) two elements of x have
different signs; (ii) all elements of x have the same sign as
�1/d; or (iii) the quantity �1+ �2x1 + · · · + �nxn−1�/d is
negative, where d ≡ 1+ ��2 −�1�x1 +· · ·+ ��n −�1�xn−1.

We will make the most use out of the first condition
for impossibility in Proposition 3 because it describes
the bulk of the cases in which the tangency portfolio
is impossible.

5.2. The Probability of Impossible
Tangency Portfolios

To determine the probability that the CAPM tangency
portfolio is impossible, we need to choose a proba-
bility distribution on the underlying variables �, �m,
�m, rf , and 
. Once these variables are determined,
� and � are determined as well, and Proposition 3
will allow us to assess the impossibility of the corre-
sponding tangency portfolio.
For our probability distribution, we allow �, �m,

�m, and rf to be specified arbitrarily—our results
will hold uniformly across any choice of these vari-
ables. With respect to 
, we decompose the matrix
into components and allow all but one of those
components to be specified arbitrarily. Specifically,
we write 
 as


 =
(

�11 0

0 �


)[(
1 �′

0 In−1

)]

=
(

�11 �11�
′

�11� �
 + �11��′

)
� (34)

where � ∈ Rn−1, �
 is an �n − 1� × �n − 1� positive-
definite matrix, and �11 > 0. The values of �
 and
�11 can be specified arbitrarily. With respect to �, we
impose a probability distribution ����� on Rn−1, and
in our probability calculations we consider several
possible choices of �� . Thus, for our probability dis-
tribution on the underlying variables, we allow com-
pletely arbitrary specification of all terms except �,
and with respect to � we focus on a number of dif-
ferent choices of probability distributions on Rn−1.
The characterization of impossibility in Proposi-

tion 3 relies on expressing � =AMA′ in terms of coor-
dinates x, w, and V for M. Our probability distribu-
tion, however, is expressed in terms of another set of
coordinates for �, namely, �, �11, �
, �m, and �. Thus,
we need to calculate the relationship between these
choices of coordinates to apply the characterization of
impossibility to draws from our distribution. The rela-
tionship of primary importance will be the expression
of x in terms of the coordinates for the probability
distribution, so we now turn to this calculation.
Multiplying on the right by �A′�−1 and on the left

by A−1 in the expression for � in (31), and using the
definition of A, we see that

M = e1e
′
1��m/�m�2 +

(
�11/�2

1 ��11/�1�z′

��11/�1�z �
 + �11zz′

)

=
(

�11/�2
1 + ��m/�m�2 ��11/�1�z′

��11/�1�z �
 + �11zz′

)
� (35)

where z= � − ��/�1, with �� = ��2� � � � ��n�′. In light of
the expression for M in (32), we have

x=V−1�Vx� = ��11/�1�� �
 + �11zz
′�−1z� (36)

Because � = �rf + ���m − rf � and z is determined
by � and �, we see that (36) expresses x in terms
of the coordinates for our probability distribution, as
desired. After some algebraic manipulation, we can
also write this expression for x as

x=
(

�11/�1

1+ �11

∥∥ �
−1/2z
∥∥2
)

�
−1z� (37)

This is a more useful formula for x because we are
interested in the signs of the elements of x, and this
expression shows these are the same as the signs of
the elements of �
−1z/�1 (because the remaining mul-
tiplicative factor is always positive).

Theorem 6. Let p be the probability that the tangency
portfolio implied by the CAPM is impossible when the
probability distribution on the term � underlying the
covariance matrix 
 has a distribution given by �� . A
lower bound for p is

p ≥ det� �
�
∫
Rn−1

F ������ �
� + ��/�1�� (38)
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where F is equal to 1 whenever � has two elements with
different signs, and equal to 0 otherwise.

We now make the result more concrete by applying
the theorem to specific choices for the distribution �� .

Corollary 2. If �� has an �n − 1�-dimensional mul-
tivariate normal distribution with mean ��/�1 and covari-
ance matrix s �
2 for some s > 0, then the probability that
�� is impossible satisfies

p ≥ 1− 22−n� (39)

and this result is independent of the choice of s.

Note that choices of �� not centered at ��/�1 will
generally have a lower probability of impossibility.
However, for choices of �� that are close to the uni-
form distribution, e.g., those with large variance, the
probability of impossibility will have a lower bound
similar to that in Corollary 2.

5.3. A Nonimpossible Covariance Matrix
Given the simple structure of the linear one-factor
model (30), it should be possible to find some covari-
ance matrix �� “close” to � in some sense that
yields a “nonimpossible” tangency portfolio, i.e., a
tangency portfolio that has strictly positive market-
capitalization weights �m and is consistent with �, �,
and rf . Using the techniques developed in §5.1, we
construct such a nonimpossible covariance matrix in
this section and show how it is related to Black and
Litterman’s (1992) approach to asset allocation with
prior information.
Suppose that a mean return vector, �, and a market-

capitalization weight vector, �m, are given, and con-
sider a covariance matrix � that is derived either
empirically or from prior information, but that is
not necessarily compatible with � and �m in the
sense that �m �= �−1�, as required by the CAPM. The
matrix most compatible with the observed � but still
conforming to the known values of � and �m can
be determined in the following manner. Write � =
AMA′, and write M in terms of w, x, and V, as in
(32). Replace x by �x, where �x is defined by

�xi =
−�m�i+1

�1 + ��2 − �1��m�2 + · · · + ��n − �1��m�n

(40)

for 1 ≤ i ≤ n − 1. The formula in (40) inverts the rela-
tionship between �m and x from (33), so the value
of �x is the unique value compatible with the market
weight vector �m and the expected-return vector �.

The change from x to �x described in the last para-
graph corresponds to a change in the overall covari-
ance matrix. Replace � by �� where

�� ≡A �MA′� �M≡
(

w + �x′V�x �x′V

V�x V

)
� (41)

This new covariance matrix, ��, is then compatible
with �m and � in that �m is the tangency portfolio
resulting from this mean and covariance. In addition,
�� is the covariance matrix most compatible with the
specified values of � and �m and the observed value
of � in that it requires precisely the amount of alter-
ation to � needed to make the three sets of parameters
compatible.
Therefore, for those who have strong conviction

that the CAPM must hold and that � and �m are,
in fact, the correct expected returns and market
weights, and � is their best estimate of the covariance
matrix, the covariance matrix they should adopt is ��
given in (41).

6. Empirical Analysis
To gauge the empirical relevance of our impossibility
results, we use daily and monthly returns for stocks
in the S&P 500 index to estimate portfolio parameters
����� and show that the realizations of impossible
frontiers in the historical record are nontrivial. These
results update and confirm similar empirical exam-
ples in Green (1986) and Best and Grauer (1992).

6.1. The Data
The monthly data consist of returns for stocks listed
on the S&P 500 in December of 1995 for which
monthly return data were available for the period
from January 1980 through December 2005. The daily
data consist of returns for stocks listed on the S&P
500 in December of 1995 for which daily return data
was available for the period from January 1, 1996,
through December 31, 2005. There are a total of 271
stocks in the monthly data set and 326 stocks in the
daily data set.

6.2. A 100-Stock Empirical Efficient Frontier
For concreteness, we construct the efficient frontier
for the first 100 assets for both daily and monthly
returns using standard estimators for the means and
covariance matrices. The two frontiers are plotted in
Figure 1, and we find that both are impossible. The
thin lines indicate the unconstrained frontiers, and the
thick lines indicate the frontiers constrained to allow
only 50% short selling. Figure 2 shows the amount
of short selling for points on both of these frontiers.
Clearly the short-sales constraints do not eliminate the
problem of impossible frontiers and have a signifi-
cant impact on the characteristics of the constrained
optimal portfolio.

6.3. More Impossible Frontiers
Applying the usual sample mean and covariance-
matrix estimators to daily and monthly returns, we
compute estimates ���� ��� and construct efficient fron-
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Figure 1 Unconstrained Efficient Frontier for 100 Stocks in the S&P
500 Index, as Well as the Frontier Constrained to Allow No
More Than 50% Short Selling, Based on (a) Daily Returns
from January 1, 1996, to December 31, 2005, and
(b) Monthly Returns from January 1980 to December 2005
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(b) Monthly returns

tiers for each of 2 through 326 assets for daily returns,
and 2 through 271 assets for monthly returns. Figure 3
shows the fraction of assets with respect to which
each frontier is impossible. Figure 4 shows the size
of the short positions in the portfolios �g and �� for
each of these frontiers. These results show that neg-
ative holdings are the rule rather than the exception
for empirical efficient frontiers, and nonnegativity
constraints are likely to have a major impact on the
characteristics of mean-variance-optimized portfolios.

6.4. Estimation Error
One possible critique of our empirical analysis is that
estimation error is likely to yield sample means and
covariances that are inconsistent with the CAPM, so
it is not surprising that we find impossible fron-

Figure 2 Magnitude of Short Positions for Points on the
Unconstrained Efficient Frontier for 100 Stocks in the
S&P 500 Index, as Well as the Frontier Constrained to
Allow No More Than 50% Short Selling, Based on
(a) Daily Returns from January 1, 1996, to December 31,
2005, and (b) Monthly Returns from January 1980 to
December 2005
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tiers in the data. But this observation only under-
scores the ubiquity of impossible frontiers in prac-
tice. Because the population means and covariance
matrix must always be estimated in financial appli-
cations, estimation error is an unavoidable aspect of
practical portfolio management. Although a number
of authors have explored the impact of estimation
error on portfolio optimization (see, e.g., Brown 1976;
Bawa et al. 1979; Frost and Savarino 1986; Jorion 1986;
Jagannathan and Ma 2003; Tu and Zhou 2004, 2007,
2008; Wang 2005; Garlappi et al. 2007; Kan and Zhou
2007; DeMiguel et al. 2009), and alternatives such
as Bayesian inference (Brown 1976), robust portfo-
lio optimization (Fabozzi et al. 2007), and resampling
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Figure 3 The Fraction of Assets with Respect to Which the Empirical
Frontiers Are Impossible, as a Function of the Number of
Assets Underlying the Frontiers, Based on a Subset of S&P
500 Stocks Using (a) Daily Returns from January 1, 1996, to
December 31, 2005, with the Number of Stocks, n, Ranging
from 2 to 326; and (b) Monthly Returns from January 1980
to December 2005, with the Number of Stocks, n, Ranging
from 2 to 271
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(b) Monthly returns

(Michaud 1998) have been developed in response,
none of these methods addresses the impossibility of
the population mean-variance-efficient frontier.
In particular, Theorems 1 and 2 show that impos-

sible frontiers are almost certain to occur, even in the
absence of estimation error. To the extent that estima-
tion error can be viewed as random perturbations of
population parameters (as opposed to perturbations
that yield parameters closer to those satisfying a
CAPM/APT relation), it is even more likely that esti-
mated means and covariances will yield impossible
frontiers. In other words, if a frontier is impossible for
a set of population parameters, adding random noise
to those parameters is unlikely to yield frontiers that
are consistent with the CAPM.

Figure 4 Magnitude of Short Positions in the Portfolios �g and �� for
the Empirical Frontiers, Based on a Subset of S&P 500
Stocks Using (a) Daily Returns from January 1, 1996, to
December 31, 2005, with the Number of Stocks, n, Ranging
from 2 to 326; and (b) Monthly Returns from January 1980
to December 2005, with the Number of Stocks, n, Ranging
from 2 to 271
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7. Conclusion
In this paper, we have shown that mean-variance-
efficient frontiers almost always contain short posi-
tions, implying a fundamental inconsistency between
efficiency and economic equilibrium as described by
the CAPM. This result is distinct from earlier con-
cerns in the literature regarding the mean-variance
efficiency of the market portfolio. Those concerns
involved the observability of the total market port-
folio, the existence of nontraded assets such as
human capital, estimation errors in the sample means
and covariance matrix, nonstationarities, asymmetric
information, and other capital-market imperfections.
Even in a frictionless world where all parameters
are fixed and known, and where all of the other
perfect-markets assumptions of the CAPM hold,
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mean-variance-efficient frontiers are almost always
impossible.
This surprisingly general result provides a potential

explanation for the near universal disdain with which
long-only portfolio managers regard standard mean-
variance optimization techniques. These investment
professionals—who comprise the majority of end
users of commercial portfolio construction software
such as the BARRA Optimizer and the Northfield
Portfolio Optimizer—have railed against mindless
optimization for years, arguing that portfolio weights
obtained in this manner are ill behaved and must
be constrained or otherwise postprocessed. However,
the typical rationale for these complaints is that the
weights of frontier portfolios are too unstable and
too sensitive to estimation error to be of practical
value. We have identified a distinctly different ratio-
nale, which is the ubiquity of short positions in fron-
tier portfolios, even in the absence of estimation error.
An impossible frontier is, in fact, literally impossible
for the long-only portfolio manager. The surging pop-
ularity of 130/30 and more general long/short strate-
gies among such managers and their investors may
well be a practical manifestation and an unintended
consequence of the impossibility of mean-variance-
optimal portfolios.
The virtual certainty of impossible frontiers also has

implications for the interpretation of economic equi-
librium. The converse of our impossibility theorem is
that the set of parameters, �����, that are “possible,”
i.e., that are consistent with the mean-variance effi-
ciency of the market portfolio, is a vanishingly small
set as the number of assets grows without bound.
In particular, in a CAPM equilibrium, covariances
are also endogenously determined via supply and
demand, despite the fact that most asset-pricing mod-
els focus exclusively on the properties of expected
returns in equilibrium. Is it any wonder that the set
of n means and n�n + 1�/2 covariances that is con-
sistent with capital-market equilibrium is apparently
quite sparse?
To the disciples of general equilibrium theory, this

may be heretical, but from a broader and more prac-
tical perspective, it should not be too surprising that
the likelihood of simultaneous equality of supply and
demand across a large number of markets is small,
and increasingly less likely as the number of assets
grows. With the techniques developed in this paper,
we hope to be able to deduce other generic properties
of financial market equilibria as well as their practical
implications.
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Appendix
In this appendix, we provide proofs for the main results of
this paper.

Proof of Proposition 1. When there are only n = 2
assets, we may write the set of points on the frontier
simply as

� =
{

�� � =
[

�o − �1

�2 − �1

�2 − �o

�2 − �1

]′
for �o ≥ B

C

}
�

Thus, for all expected returns �o with �1 < �o < �2, points
on the frontier have positive weight in both components,
but for all values of �o outside this range, every point on
the frontier has exactly one negative component. If the min-
imum value of �o, namely, �o = B/C, is less than �2, then
at least some point on the frontier has all positive weights,
but if this value of �o is greater than �2, then all points on
the frontier have at least one negative weight.

The condition that B/C < �2 is the same as the condition
that

�1�e
′
1�

−1�� + �2�e
′
2�

−1��

�e′
1�

−1�� + �e′
2�

−1��
< �2�

The denominator on the left-hand side is nonnegative,
according to the Cauchy-Schwarz inequality, so we may
cross-multiply and collect terms to see that the inequality
holds exactly when e′

1�
−1� > 0. This, in turn, is the same as

the inequality 	 < �2/�1, so we see that a frontier will be
impossible just when �2/�1 < 	 ≤ 1 and �1 < �2, which is
the assertion of Proposition 1. �

Proof of Lemma 1. We note that an (n × n) correlation
matrix is positive definite if its elements are the cosines of
angles between a pairs of vectors chosen from a set of n
unit vectors that span an n-dimensional space. Thus, for a
3× 3 matrix

M=

⎛
⎜⎜⎝
1 a c

a 1 b

c b 1

⎞
⎟⎟⎠ �

positive definiteness holds if there are three vectors, u1, u2,
and u3, such that a is the cosine of the angle between the
first two vectors, b is the cosine of the angle between the
last two vectors, and c is the cosine of the angle between
the first and the last vector. Any values for a and b may be
specified provided that −1 < a, b < 1, with strict inequality
necessary to avoid linear dependence among the vectors. If
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such values of a and b are specified, then the value of c
must follow the law of cosines so that

c = ab + c̃
√
1− a2

√
1− b2 (42)

for some −1 < c̃ < 1. Strict inequality is again necessary
to avoid linear dependence among the vectors. The defi-
nition of � in (6) specifies that a = d, b = d, and c = d4.
These values meet the requirements for positive definite-
ness, because c can be expressed in the form given in (42)
with c̃ = d2. Thus � is positive definite and the lemma
follows. �

Proof of Proposition 2. The idea of the proof is to com-
pute ��, �g , and �P directly. We obtain expressions for
each of these portfolios in terms of 
, and we then analyze
the results to show that, for small values of 
, all portfolios
on the efficient frontier are impossible. We also analyze the
results to obtain a lower bound for the minimum amount of
short selling in any portfolio throughout the entire impos-
sible frontier.

We turn first to the explicit computation of the three port-
folios. To begin, we note that the inverse covariance matrix
corresponding to the parameters in (6) is

�−1 = �4
2 �1−d2�

det���

⎛
⎜⎜⎝

1/d2 −�1+d2� d2

−�1+d2� �1+d2��1+d4� −d2�1+d2�

d2 −d2�1+d2� d2

⎞
⎟⎟⎠�

For � as defined in (6), we can multiply the above expres-
sion for �−1 by � and use the relationship d = 1−
 to obtain

�−1� = �2�
4
2 �1− d4�

det���

⎛
⎜⎜⎝


 + 
2 + 
3 + 
4 + O�
5�

−2
 + 6
2 − 4
3 + 
4


 − 
2

⎞
⎟⎟⎠ �

Dividing the bracketed vector in this expression by the sum
of its elements, we obtain

�� = �−1�

�′�−1�
= 1

72


⎛
⎜⎜⎝

12+ 18
 + 17
2 + O�
3�

−24+ 60
 − 10
2 + O�
3�

12− 6
 − 7
2 + O�
3��

⎞
⎟⎟⎠ �

which is the computation of �� in terms of 
 we desire. The
computation of �g proceeds similarly, with a direct compu-
tation of �−1� and a rescaling by the sum of vector compo-
nents to obtain

�g = �−1�

�′�−1�
= 1

72


⎛
⎜⎜⎝

12+ 30
 + 35
2 + O�
3�

−24+ 60
 − 22
2 + O�
3�

12− 18
 − 13
2 + O�
3�

⎞
⎟⎟⎠ �

Finally, we compute �P using the foregoing results to obtain

�P = B��� − �g� = B

12

⎛
⎜⎜⎝

−2− 3
 + O�
2�

2
 + O�
2�

2+ 
 + O�
2�

⎞
⎟⎟⎠ �

where

B = �′�−1� = �2�
4
2 �1− d4�

det���
�6
2 − 3
3 + 2
4� > 0�

The final inequality in the above expression holds because
�2 > 0, det��� > 0, and 0< 
 < 1.

We now use the foregoing computations to show that the
efficient frontier is impossible for sufficiently small values
of 
. Using (5), we see that every portfolio on the efficient
frontier is of the form

� = � ��P + �g�

where � ≥ 0 and ��P = �12/B��P . Inserting the above expres-
sions for �P and �g , we rewrite this expression for � as

� = �

⎛
⎜⎜⎝

−2− 3
 + O�
2�

2
 + O�
2�

2+ 
 + O�
2�

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

1/�6
� + 5/12+ �35/72�
 + O�
2�

−1/�3
� + 5/6− �11/36�
 + O�
2�

1/�6
� − 1/4− �13/72�
 + O�
2�

⎞
⎟⎟⎠ �

By solving for the value of � that makes the second coordi-
nate zero, we see that the weight of the second asset is neg-
ative for portfolios corresponding to the range 0≤ � ≤ �2,
where �2 = 1/�6
2� + O�1/
�. Similarly, by solving for the
value of � that makes the first coordinate zero, we see that
the weight of the first asset is negative for portfolios cor-
responding to the range � ≥ �1, where �1 = 1/�12
� + O�1�.
For sufficiently small values of 
, we have �2 � �1, and so
the efficient frontier is impossible. Specifically, the frontier
has negative weights in the second asset if � is between 0
and �2, and negative weights in the first asset if � is greater
than �1. Because �1 is less than �2, there is always at least
one asset with a negative weight, and in the range between
�1 and �2, both the first and second assets have negative
weight.

Finally, we note that the portfolio with the minimum
amount of short selling on the entire frontier occurs at the
point �1. To see this, we observe that for � values less than
�1, only the second asset has a negative weight, and this
weight decreases as � increases. Also, for � values greater
than �1, the first asset has a negative weight, and it increases
with � more quickly than the negative weight of the second
asset decreases. Thus, the minimum amount of short selling
occurs at � = �1, and for small values of 
, this amount of
short selling is 1/�3
� + O�1�. �

Proof of Lemma 2. The first inequality in (18) states
that the ith component of �g is negative, and the second
inequality states that the ith component of �P = B�� − B�g

is also negative. Together, these inequalities imply that
the ith component of each portfolio on the entire efficient
frontier has a negative weight, because C and D are always
positive, by the Cauchy-Schwartz inequality, and because
frontier portfolios have the form described in (5). This
demonstrates the sufficiency of the condition for impossi-
bility in the ith asset. The necessity also follows readily
because a negative ith component of each portfolio is only
possible if there is a negative ith component in the mini-
mum risk portfolio, �g , as well as in the high-risk portfolios
that tend toward a positive multiple of �� − �g .
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To deduce the equivalence between the conditions in (18)
and (19), we note that

�−1 = �A−1�′M−1A−1�

As in Definition 2, we can express M in terms of coordinates
as �X�W�V�, and we have

M−1 =
(

I2 0

−X In−2

)(
W−1 0

0 V−1

)(
I2 −X′

0 In−2

)

=
(

W−1 −W−1X′

−XW−1 V−1 +XW−1X′

)
�

From the definition of A=A�c1� � � � � cn� in (17), we see that

A−1� = e1/c1� A−1� = e2/c2� and

A−1ej = ej /cj � for 3≤ j ≤ n�

We write W = �wij � so that

W−1 = 1
det�W�

(
w22 −w12

−w12 w11

)
�

After some algebraic rearrangements, we see that the con-
ditions in (18) are equivalent to

x1� �i−2�w22 − x2� �i−2�w12 > 0 and x�i−2��2 > 0� (43)

where we have used the facts that det�W� > 0 and w22 > 0,
because W is positive definite.

With the notation from Definition 2, we write w22 =
v, w12 = yv, x1� i−2 = ri−2 cos�i−2, and x2� i−2 = ri−2 sin �i−2.
Equation (43) can be rewritten in terms of these new
coordinates as

cos�i−2 − y sin �i−2 > 0 and sin �i−2 > 0

because both ri−2 > 0 and v > 0, and this is the condition
in (19). �

Proof of Theorem 1. From Equation (19) of Lemma 2
we see that the probability, pi, that a frontier is impos-
sible with respect to the ith coordinate, for i > 2, is just
the probability that the conditions of (19) are fulfilled
when �i−2 is chosen from the uniform distribution on S1 =
�0�2��. The conditions are satisfied exactly when � ∈ �0���
and y < cot �i−2, and this corresponds to a probability of
impossibility

pi = 1
2�

cot−1 y�

where cot−1 denotes the branch of the inverse cotangent
with values between 0 and �.

Equation (19) of Lemma 2 also shows that for a fixed
value of y, impossibility in the ith coordinate is independent
of impossibility in the jth coordinate, for i� j > 2. Thus, the
probability of impossibility in at least one of the coordinates
i > 2 is bounded below as

p ≥ 1−
(
1− 1

2�
cot−1 y

)n−2

�

and this implies the first inequality of the theorem. The
second inequality follows directly, because the inequality
cot−1 y ≥ 1/�1+max�0�y�� holds for all y. �

Proof of Theorem 2. From Corollary 1, we see that the
probability in the theorem is bounded below as

PI ≥ 1−
∫
R

(
1− 1

2��1+max�0�y��

)n−2

�y�y�

≥ 1−
∫ 0

−�

(
1− 1

2�

)n−2

�y�y�

− c
∫ �

0

(
1− 1

2��1+ y�

)n−2

e−y2 dy�

The first integral in the last line is bounded above by
�1− 1/�2���n−2. The second integral is bounded above by
the sum

c
∫ 2

0

(
1− 1

6�

)n−2

e−y2 dy + c
∫ �

2

(
1− 1

3�y

)n−2

e−y2 dy�

The first integral in this sum is bounded above by
c�1− 1/�6���n−2, and the second integral is bounded above
by 2ce−��n−2�/�3���2/3

. This last bound follows from the fact
that �1− 1/�3�y��n−2 is bounded above by e−��n−2�/�3���2/3 for
0≤ y ≤ ��n − 2�/�3���1/3, as well as the fact that∫ �

��n−2�/�3���1/3
e−y2 dy < e−��n−2�/�3���2/3

�

Combining these results, we see that the probability is
bounded below by

PI ≥ 1−
(
6
7

)n−2

− c

(
19
20

)n−2

− 2c exp
(

−
(

n − 2
3�

)2/3)
�

where we have made use of the fact that 6/7 > 1− 1/�2��
and the fact that 19/20> 1− 1/�6��. Finally, we note that

�19/20�n−2 ≤ 2exp�−��n − 2�/�3���2/3��

This inequality can be proven by noting that it holds if
and only if the logarithm of the right-hand side minus
the logarithm of the left-hand side is positive for n ≥ 2.
Computation of the value of this difference shows that it is
positive for n ≤ 27, and computation of the derivative of the
difference, taken with respect to n, shows that the derivative
is positive for n ≥ 27. As a result, the difference is positive
for all n, and the inequality holds. Thus, we can bound PI

below as

PI ≥ 1−
(
6
7

)n−2

− 4c exp
(

−
(

n − 2
3�

)2/3)
� �

Proof of Theorem 3. The expected number of assets
with respect to which an efficient frontier is impossible
satisfies

En ≥
∫
R

( n∑
i=3

1
2��1+max�0�y��

)
�y�y��

This follows from the proof of Theorem 1, which shows
that the ith summand in the integrand is a lower bound
for the probability that a covariance matrix gives rise to an
impossible frontier for a fixed value of y. We thus see that

En ≥ �n − 2�
∫
R

(
1

2��1+max�0�y��

)
�y�y��
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and this last integral is the constant c′ from the statement
of the theorem. Also, in the case in which �y�y� is a normal
distribution with unit variance, we see from a numerical
computation that

En ≥ n − 2
8

�

and this is the final claim of the theorem. �

Proof of Theorem 4. If a frontier meets the necessary
and sufficient conditions of Lemma 2 for the ith coordinate
where 3≤ i ≤ n, then it is an impossible frontier with respect
to the ith asset. In this case, the ith components of both �g

and �P are negative, so the total amount of short selling in
the ith asset throughout the frontier is bounded below by
the amount of short selling in the ith asset for the minimum-
variance portfolio. Thus, we see that

Si��� ≥ −e′
i�g = −e′

i�
−1�

�′�−1�
= −�−ri−2 cos�i−2 + yri−2 sin �i−2��

where we have used the change of coordinates � = AMA′

and the coordinates for M from Definition 2 to establish the
final equality. We thus see that the expected amount of short
selling with respect to the ith asset satisfies

E�Si� ≥
∫ �

0

(∫ �

0

∫ cot �i−2

−�
�ri−2 cos�i−2

− yri−2 sin �i−2��y

d�i−2

2�

)
�ri−2

� (44)

where we have used the result from Lemma 2 in which a
frontier is impossible with respect to the ith asset exactly
when �i−2 ∈ �0��� and y < cot �i−2. We have also used the
notation �y and �ri−2

from Definition 3.
Because the integrand in (44) is positive throughout the

region of integration, we can find a smaller lower bound by
restricting the size of the region of integration. We calculate

E�Si� ≥
(∫ �

0
ri−2�ri−2

)(∫ �/2

0

∫ 0

−�
�cos�i−2−ysin�i−2��y

d�i−2

2�

)

= 1
2�

(∫ �

0
ri−2�ri−2

)(∫ 0

−�
�1−y��y

)
�

This is the lower bound in the theorem for E�Si�. The lower
bound for E�S� follows immediately if the �ri−2

are identical
for 3≤ i ≤ n. �

Proof of Theorem 5. Let �0 be the frontier constrained
to allow no short selling that corresponds to � and �b . Let
�0 be the risk of the minimum risk portfolio on �0, and let
�0 be the expected return of the maximum-expected-return
portfolio on �0. Each portfolio on �b with a lower risk than
�0 must involve short selling, because �0 is the minimum
possible risk without short selling. Similarly, each portfolio
on �b with a higher expected return than �0 must involve
short selling, because �0 is the maximum possible expected
return without short selling. Thus, we need only show that
each portfolio on �b with a risk greater than or equal to
�0 and an expected return less than or equal to �0 must
involve short selling.

Let �b be a portfolio on �b with risk and expected return
�b and �b , respectively, such that �b ≥ �0 and �b ≤ �0. There
are weight vectors �0 and �U on �0 and � , respectively,
with the same expected return as �b . For 0≤ � ≤ 1, write

�� = �1− ���0 + ��U

so that each �� also has the same expected return �b . Let ��

denote the risk of ��. Note that �� is a decreasing function
of �, for 0 ≤ � ≤ 1, because �2

� is a quadratic function of �,
and because � = 1 corresponds to the minimum risk port-
folio for the level of expected return �b . We assume here
that � is impossible so that �U involves short selling and
is therefore distinct from �0. We thus see that each �� with
� > 0 has lower risk than �0 but the same level of return
�b . Also, the amount of short selling in �� is positive for all
� > 0 but goes to zero as � → 0. As a result, there is some
�∗ > 0 such that the amount of short selling on ��∗ is no
more than b. The existence of this ��∗ implies that �b must
be no greater than ��∗ , and hence strictly less than the risk
of �0. Because the risk of �b must be strictly less than the
risk of �0, it follows that �b must involve short selling, as
desired. �

Proof of Theorem 6. From the condition for impossibil-
ity in Proposition 3 and from the expression for x in (37),
we see that the probability is bounded below by

p ≥
∫
Rn−1

F �x������

=
∫
Rn−1

F

((
�11/�1

1+ �11� �
−1/2z�2
)

�
−1z
)

������

where z = � − ��/�1. Because F depends only on the signs
of the elements of its argument, we have

p ≥
∫
Rn−1

F � �
−1z�������

and after a change of variables, we see that

p ≥ det� �
�
∫
Rn−1

F ������ �
� + ��/�1�

as desired. �

Proof of Corollary 2. Substitution of the specified
choice of �� into the result of Theorem 6 shows that

p ≥ 1
�2�s��n−1�/2

∫
Rn−1

F ���exp
(

− 1
2s

�′�
)

d��

This integral is simply an expression for the fraction of the
unit sphere in Rn−1 that does not have either all negative
or all positive coordinates, and this fraction is 1 − 22−n, as
desired. �
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