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Abstract

We propose a simple analytical framework to measure the value added or subtracted by stop-loss rules—
predetermined policies that reduce a portfolio’s exposure after reaching a certain threshold of cumulative
losses—on the expected return and volatility of an arbitrary portfolio strategy. Using daily futures price
data, we provide an empirical analysis of stop-loss policies applied to a buy-and-hold strategy using index
futures contracts. At longer sampling frequencies, certain stop-loss policies can increase expected return
while substantially reducing volatility, consistent with their objectives in practical applications.
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1. Introduction

Thanks to the overwhelming dominance of the mean–variance portfolio optimization
framework pioneered by Markowitz (1952), Tobin (1958), Sharpe (1964), and Lintner (1965),
much of the investments literature—both in academia and in industry—has focused on
constructing well-diversified static portfolios using low-cost index funds. With little use for
active trading or frequent rebalancing, this passive perspective comes from the recognition that
individual equity returns are difficult to forecast and trading is not costless. The questionable
benefits of day-trading are unlikely to outweigh the very real costs of changing one's portfolio
weights. It is, therefore, no surprise that a “buy-and-hold” philosophy has permeated the mutual-
fund industry and the financial planning profession.1

However, this passive approach to investing is often contradicted by human behavior,
especially during periods of market turmoil.2 Behavioral biases sometimes lead investors astray,
causing them to shift their portfolio weights in response to significant swings in market indexes,
often “selling at the low” and “buying at the high.” On the other hand, some of the most seasoned
investment professionals routinely make use of systematic rules for exiting and re-entering
portfolio strategies based on cumulative losses, gains, and other “technical” indicators.

In this paper, we investigate the efficacy of such behavior in the narrow context of stop-loss
rules (i.e., rules for exiting an investment after some threshold of loss is reached and re-entered
after some level of gains is achieved). We wish to identify the economic motivation for stop-loss
policies so as to distinguish between rational and behavioral explanations for these rules. While
certain market conditions may encourage irrational investor behavior (e.g., large rapid market
declines), stop-loss policies are sufficiently ubiquitous that their use cannot always be irrational.

This raises the question we seek to answer in this paper: When do stop-loss rules stop losses?
In particular, because a stop-loss rule can be viewed as an overlay strategy for a specific
portfolio, we can derive the impact of that rule on the return characteristics of the portfolio. The
question of whether or not a stop-loss rule stops losses can then be answered by comparing the
expected return of the portfolio with and without the stop-loss rule. If the expected return of the
portfolio is higher with the stop-loss rule than without it, we conclude that the stop-loss rule
does, indeed, stop losses.

Using simple properties of conditional expectations, we are able to characterize the marginal
impact of stop-loss rules on any given portfolio's expected return, which we define as the
“stopping premium.” We show that the stopping premium is inextricably linked to the stochastic
process driving the underlying portfolio's return. If the portfolio follows a random walk (i.e.,
independently and identically distributed returns) the stopping premium is always negative. This
may explain why the academic and industry literature has looked askance at stop-loss policies to
date. If returns are unforecastable, stop-loss rules simply force the portfolio out of higher-
yielding assets on occasion, thereby lowering the overall expected return without adding any
benefits. In such cases, stop-loss rules never stop losses.
1This philosophy has changed slightly with the recent innovation of a slowly varying asset allocation that changes
according to one's age (e.g., a “lifecycle” fund).

2For example, psychologists and behavioral economists have documented the following systematic biases in the human
decisionmaking process: overconfidence (Fischoff and Slovic, 1980; Barber and Odean, 2001; Gervais and Odean, 2001),
overreaction (DeBondt and Thaler, 1986), loss aversion (Kahneman and Tversky, 1979, 1992; Shefrin and Statman, 1985;
Odean, 1998), herding (Huberman and Regev, 2001), psychological accounting (Kahneman and Tversky, 1981),
miscalibration of probabilities (Lichtenstein, Fischoff, and Phillips, 1982), hyperbolic discounting (Laibson, 1997), and
regret (Bell, 1982a,b; Clarke, Krase, and Statman, 1994).
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However, for non-random-walk portfolios, we find that stop-loss rules can stop losses. For
example, if portfolio returns are characterized by “momentum” or positive serial correlation, we
show that the stopping premium can be positive and is directly proportional to the magnitude of
return persistence. Not surprisingly, if conditioning on past cumulative returns changes the
conditional distribution of a portfolio's return, it should be possible to find a stop-loss policy that
yields a positive stopping premium. We provide specific guidelines for finding such policies
under several return specifications: mean reversion, momentum, and Markov regime-switching
processes. In each case, we are able to derive explicit conditions for stop-loss rules to stop losses.
Of course, focusing on expected returns does not account for risk in any way. It may be the

case that a stop-loss rule increases the expected return but also increases the risk of the
underlying portfolio, yielding ambiguous implications for the risk-adjusted return of a portfolio
with a stop-loss rule. To address this issue, we compare the variance of the portfolio with and
without the stop-loss rule and find that, in cases where the stop-loss rule involves switching to a
lower-volatility asset when the stop-loss threshold is reached, the unconditional variance of the
portfolio return is reduced by the stop-loss rule. A decrease in the variance coupled with the
possibility of a positive stopping premium implies that, within the traditional mean–variance
framework, stop-loss rules may play an important role under certain market conditions.
To illustrate the empirical relevance of our analysis, we apply a simple stop-loss rule to a

standard asset-allocation problem of stocks versus bonds using daily futures data from January
1993 to November 2011. We find that stop-loss rules exhibit positive stopping premiums over
longer sampling frequencies over a larger range of threshold values. These policies also provide
substantial reduction in volatility creating larger Sharpe ratios as a result. This is a remarkable
feat for a buy-high/sell-low strategy. For example in one calibration, using stop loss over
monthly intervals in daily data can increase the return by 1.5% and decrease the volatility by 5%,
causing an increase in the Sharpe ratio by as much as 20%. These results suggest that stop-loss
rules may exploit conditional momentum effects following periods of losses in equities. These
results suggest that the random walk model is a particularly poor approximation to U.S. stock
returns and may improperly value the use of non-linear policies such as stop-loss rules. This is
consistent with Lo and MacKinlay (1999) and others using various methods to examine
limitations of the random walk.
2. Literature review

Before presenting our framework for examining the performance impact of stop-loss rules, we
provide a brief review of the relevant portfolio-choice literature, and illustrate some of its
limitations to underscore the need for a different approach.
The standard approach to portfolio choice is to solve an optimization problem in a multi-

period setting, for which the solution is contingent on two important assumptions: the choice of
objective function and the specification of the underlying stochastic process for asset returns. The
problem was first posed by Samuelson (1969) in discrete time and Merton (1969) in continuous
time, and solved in both cases by stochastic dynamic programming. As the asset-pricing
literature has grown, this paradigm has been extended in a number of important directions.3
3For a comprehensive summary of portfolio choice see Brandt (2010). Recent extensions include predictability and
autocorrelation in asset returns (Kim and Omberg, 1996; Liu, 1999; Campbell and Viceira, 1999; Brennan and Xia, 2001;
Xia, 2001; Wachter, 2002), model uncertainty (Barberis, 2000), transaction costs (Balduzzi and Lynch, 1999), stochastic
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However, in practice, household investment behavior seems to be at odds with finance theory.
In particular, Ameriks and Zeldes (2004) observe that most observed variation in an individual's
portfolio is attributed to a small number of significant decisions they make as opposed to
marginal adjustments over time. Moreover, other documented empirical characteristics of
investor behavior include non-participation (Calvet, Campbell, and Sodini, 2006); under-
diversification (Calvet, Campbell, and Sodini, 2006); limited monitoring frequency and trading
(Ameriks and Zeldes, 2004); survival-based selling decisions or a “flight to safety” (Agnew,
2003); an absence of hedging strategies (Massa and Simonov, 2004); and concentration in simple
strategies through mutual-fund investments (Calvet, Campbell, and Sodini, 2006). Variations in
investment policies due to characteristics such as age, wealth, and profession have been
examined as well.4

In fact, in contrast to the over-trading phenomenon documented by Odean (1999) and Barber
and Odean (2000), Agnew (2003) asserts that individual investors actually trade infrequently. By
examining asset-class flows, she finds that investors often shift out of equities after extremely
negative asset returns into fixed-income products, and concludes that in retirement accounts,
investors are more prone to exhibit a “flight to safety” instead of explicit return chasing. Given
that one in three of the workers in the United States participate in 401(k) programs, it is clear that
this flight to safety could have a significant impact on market prices as well as demand.
Consistent with Agnew's flight-to-safety in the empirical application of stop-loss, we find
momentum in long-term bonds as a result of sustained periods of loss in equities. This suggests
conditional relationships between stocks and bonds, an implication that is also confirmed by our
empirical results.5

Although stop-loss rules are widely used, the corresponding academic literature is rather
limited. The market microstructure literature contains a number of studies about limit orders and
optimal order selection algorithms (Easley and O'Hara, 1991; Biais, Hillion, and Spatt, 1995;
Chakravarty and Holden, 1995; Handa and Schwartz, 1996; Harris and Hasbrouck, 1996; Seppi,
1997; Lo, MacKinlay, and Zhang, 2002). Carr and Jarrow (1990) investigate the properties of a
particular trading strategy that employs stop-loss orders, and Shefrin and Statman (1985) and
Tschoegl (1988) consider behavioral patterns that may explain the popularity of stop-loss rules.
However, to date, there has been no systematic analysis of the impact of a stop-loss rule on an
existing investment policy, an oversight that we remedy in this paper.
3. A framework for analyzing stop-loss rules

In this section, we outline a framework for measuring the impact of stop-loss policies on
investment performance. In Section 3.1, we begin by specifying a simple stop-loss policy and
deriving some basic statistics for its effect on an existing portfolio strategy. We describe several
generalizations and qualifications of our framework in Section 3.2, and then apply our
(footnote continued)
opportunity sets (Brennan, Schwartz, and Lagnado, 1997; Campbell, Chan, and Viceria, 2003; Brandt, Goyal, Santa-
Clara, and Stroud, 2005), and behavioral finance (see the references in footnote 3).

4For example, lack of age-dependence in allocation, lower wealth and lower education with greater non-participation
and under-diversification, and greater sophistication in higher wealth investors have all been considered (see Ameriks and
Zeldes, 2004).

5Although excess performance in long-term bonds may seem puzzling, from a historical perspective, the deregulation
of long-term government fixed-income products in the 1950s could provide motivation for the existence of these effects.



K.M. Kaminski, A.W. Lo / Journal of Financial Markets 18 (2014) 234–254238
framework in Section 4 to various return-generating processes including the Random Walk
Hypothesis, momentum and mean-reversion models, and regime-switching models.

3.1. Assumptions and definitions

Consider any arbitrary portfolio strategy P with returns frtg that satisfy the following
assumptions:
(A1)
6For
multip
signifi
with a
The returns frtg for the portfolio strategy P are stationary with finite mean μ and
variance s2.
(A2)
 The expected return μ of P is greater than the risk-free rate rf, and let π≡μ�rf denote the
risk premium of P.
Our use of the term “portfolio strategy” in Assumption (A1) is meant to underscore the
possibility that P is a complex dynamic investment policy, not necessarily a static basket of
securities. Assumption (A2) simply rules out perverse cases where stop-loss rules add value
because the “safe” asset has a higher expected return than the original strategy itself.
Now suppose an investor seeks to impose a stop-loss policy on a portfolio strategy. This

typically involves tracking the cumulative return Rt(J) of the portfolio over a window of J
periods, where:6

RtðJÞ≡ ∑
J

j ¼ 1
rt�jþ1 ð1Þ

and when the cumulative return crosses some lower boundary, reducing the investment in P by
switching into cash or some other safer asset. This heuristic approach motivates the following
definition:

Definition 1. A simple stop-loss policy Sðγ; δ; JÞ for a portfolio strategy P with returns frtg is a
dynamic binary asset-allocation rule fstg between P and a risk-free asset F with return rf, where st
is the proportion of assets allocated to P, and:

st≡

0 if Rt�1ðJÞo�γ and st�1 ¼ 1 ðexitÞ
1 if rt�1≥δ and st�1 ¼ 0 ðre�enterÞ
1 if Rt�1ðJÞ≥�γ and st�1 ¼ 1 ðstay inÞ
0 if rt�1oδ and st�1 ¼ 0 ðstay outÞ

8>>>><
>>>>:

ð2Þ

for γ≥0. Denote by rst the return of portfolio strategy S, which is the combination of portfolio
strategy P and the stop-loss policy S, hence:

rst≡strt þ ð1�stÞrf : ð3Þ

Definition 1 describes a 0/1 asset-allocation rule between P and the risk-free asset F, where
100% of the assets are withdrawn from P and invested in F as soon as the J-period cumulative
simplicity, we ignore compounding effects and define cumulative returns by summing simple returns rt instead of
lying ð1þ rtÞ. For the purposes of defining the trigger of our stop-loss policy, this approximation does not have
cant impact. However, we do take compounding into account when simulating the investment returns of a portfolio
nd without a stop-loss policy.
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return Rt1 ðJÞ reaches some loss threshold γ at t1. The stop-loss rule stays in place until some
future date t2�14t1 when P realizes a return rt2�1 greater than δ, at which point 100% of the
assets are transferred from F back to P at date t2. Therefore, the stop-loss policy Sðγ; δ; JÞ is a
function of three parameters: the loss threshold γ, the re-entry threshold δ, and the cumulative-
return window J. Of course, the performance of the stop-loss policy also depends on the
characteristics of F—lower risk-free rates imply a more significant drag on performance during
periods when the stop-loss policy is in effect.

Note that the specification of the loss and re-entry mechanisms are different; the exit decision
is a function of the cumulative return Rt�1ðJÞ, whereas the re-entry decision involves only the
one-period return, rt�1. This is intentional, and motivated by two behavioral biases. The first is
loss aversion and the disposition effect, in which an individual becomes less risk-averse when
facing mounting losses. The second is the “snake-bite” effect, in which an individual is more
reluctant to re-enter a portfolio after experiencing losses from that strategy. The simple stop-loss
policy in Definition 1 is meant to address both of these behavioral biases in a systematic fashion.

To gauge the impact of the stop-loss policy S on performance, we define the following metric:

Definition 2. The stopping premium ΔμðSÞ of a stop-loss policy S is the expected return
difference between the stop-loss policy S and the portfolio strategy P:

Δμ≡E½rst��E½rt� ¼ poðrf�E½rtjst ¼ 0�Þ; ð4Þ
where

po≡Probðst ¼ 0Þ ð5Þ
and the stopping ratio is the ratio of the stopping premium to the probability of stopping out:

Δμ

po
¼ rf�E½rt st ¼ 0�:

�� ð6Þ

Note that the difference of the expected returns of rst and rt reduces to the product of the
probability of a stop-loss po and the conditional expectation of the difference between rf and rt,
conditioned on being stopped out. The intuition for this expression is straightforward: the only
times rst and rt differ are during periods when the stop-loss policy has been triggered. Therefore,
the difference in expected return should be given by the difference in the conditional expectation
of the portfolio with and without the stop-loss policy—conditioned on being stopped out—
weighted by the probability of being stopped out.

The stopping premium (4) measures the expected-return difference per unit time between the
stop-loss policy S and the portfolio strategy P, but this metric may yield misleading comparisons
between two stop-loss policies that have very different parameter values. For example, for a
given portfolio strategy P, suppose S1 has a stopping premium of 1% and S2 has a stopping
premium of 2%; this suggests that S2 is superior to S1. But suppose the parameters of S2 imply
that S2 is active only 10% of the time (i.e., one month out of every 10 on average), whereas the
parameters of S1 imply that it is active 25% of the time. On a total-return basis, S1 is superior,
even though it yields a lower expected-return difference per-unit-time. The stopping ratio Δμ=po
given in (6) addresses this scale issue directly by dividing the stopping premium by the
probability po. The reciprocal of po is the expected number of periods that st ¼ 0 or the expected
duration of the stop-loss period. Multiplying the per-unit-time expected-return difference Δμ by
this expected duration 1=po then yields the total expected-return difference Δμ=po between rf
and rt.
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The probability po of a stop-loss is of interest in its own right because more frequent stop-loss
events imply more trading and, consequently, more transactions costs. Although we have not
incorporated transactions costs explicitly into our analysis, this can be done easily by imposing a
return penalty in (3):

rst≡strt þ ð1�stÞrf�κjst�st�1j; ð7Þ

where κ40 is the one-way transactions cost of a stop-loss event. For expositional simplicity, we
shall assume κ¼ 0 for the remainder of this paper.
Using the metrics proposed in Definition 2, we now have a simple way to answer the

question posed in our title: stop-loss policies can be said to stop losses when the correspond-
ing stopping premium is positive. In other words, a stop-loss policy adds value if and only
if its implementation leads to an improvement in the overall expected return of a portfolio
strategy.
Of course, this simple interpretation of a stop-loss policy's efficacy is based purely on expected

return, and ignores risk. Risk matters because it is conceivable that a stop-loss policy with a
positive stopping premium generates so much additional risk that the risk-adjusted expected
return is less attractive with the policy in place than without it. This may seem unlikely because
by construction, a stop-loss policy involves switching out of P into a risk-free asset, implying
that P spends more time in higher-risk assets than the combination of P and S. However, it is
important to acknowledge that P and S are dynamic strategies and static measures of risk such as
standard deviation are not sufficient statistics for the intertemporal risk/reward trade-offs that
characterize a dynamic rational expectations equilibrium (e.g., Merton, 1973; Lucas, 1978).
Nevertheless, it is still useful to gauge the impact of a stop-loss policy on volatility of a portfolio
strategy P, as only one of possibly many risk characteristics of the combined strategy. To that
end, we have:
Definition 3. Let the variance difference Δs2 of a stopping strategy be given by:

Δs2≡Var½rst��Var½rt� ð8Þ

Δs2 ¼ E½Var½rstjst�� þ Var½E½rstjst���E½Var½rtjst���Var½E½rtjst�� ð9Þ

Δs2 ¼�poVar½rt st ¼ 0� þ poð1�poÞ ðrf�E½rtjst ¼ 0�Þ2� μ�E½rtjst ¼ 0�
1�po

� �2
" #

:

����� ð10Þ

From an empirical perspective, standard deviations are often easier to interpret, hence we also
define the quantity Δs≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½rst�

p �s.
Given that a stop-loss policy can affect both the mean and standard deviation of the portfolio

strategy P, we can also define the difference between the Sharpe ratios of P with and without S:

ΔSR≡
E½rst��rf

ss
� μ�rf

s
: ð11Þ
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However, given the potentially misleading interpretations of the Sharpe ratio for dynamic
strategies such as P and S, we refrain from using this metric for evaluating the efficacy of stop-
loss policies.7

3.2. Generalizations and qualifications

The basic framework outlined in Section 3.1 can be generalized in many ways. For example,
instead of switching out of P and into a completely risk-free asset, we can allow F to be a lower-
risk asset but with some non-negligible volatility. More generally, instead of focusing on binary
asset-allocation policies, we can consider a continuous function ωð�Þ∈½0; 1� of cumulative returns
that declines with losses and rises with gains. Also, instead of a single “safe” asset, we might
consider switching into multiple assets when losses are realized, or incorporate the stop-loss
policy directly into the portfolio strategy P itself so that the original strategy is affected in some
systematic way by cumulative losses and gains. Finally, there is nothing to suggest that stop-loss
policies must be applied at the portfolio level—such rules can be implemented security-by-
security or asset-class by asset-class.

Of course, with each generalization, the gains in flexibility must be traded off against the
corresponding costs of complexity and analytic intractability. These trade-offs can only be
decided on a case-by-case basis, and we leave it to the reader to make such trade-offs
individually. Our more modest objective in this paper is to provide a complete solution for the
leading case of the simple stop-loss policy in (1). From our analysis of this simple case, a number
of generalizations should follow naturally, some of which are explored in Kaminski (2006).

However, an important qualification regarding our approach is the fact that we do not derive
the simple stop-loss policy from any optimization problem—it is only a heuristic, albeit a fairly
popular one among many institutional and retail investors. This is a distinct departure from much
of the asset-pricing literature in which investment behavior is modelled as the outcome of an
optimizing individual seeking to maximize his expected lifetime utility by investing in a finite set
of securities subject to a budget constraint (e.g., Merton, 1971). While such a formal approach is
certainly preferable if the consumption/investment problem is well posed, e.g., if preferences are
given and the investment opportunity set is completely specified, the simple stop-loss policy can
still be studied in the absence of such structure.

Moreover, from a purely behavioral perspective, it is useful to consider the impact of a stop-
loss heuristic even if it is not derived from optimizing behavior, precisely because we seek to
understand the basis of such behavior. Of course, we can ask the more challenging question of
whether the stop-loss heuristic can be derived as the optimal portfolio rule for a specific set of
preferences, but such inverse-optimal problems become intractable very quickly (e.g., Chang,
1988). Instead, we have a narrower set of objectives in this paper: to investigate the basic
properties of simple stop-loss heuristics without reference to any optimization problem, and with
as few restrictions as possible on the portfolio strategy P to which the stop-loss policy is applied.
The benefits of our narrower focus are the explicit analytical results described in Section 4, and
the intuition that they provide for how stop-loss mechanisms add or subtract value from an
existing portfolio strategy.

Although this approach may be more limited in the insights it can provide to the investment
process, the siren call of stop-loss rules seems so universal that we hope to derive some useful
implications for optimal consumption and portfolio rules from our analysis. Moreover, the idea
7See Sharpe (1994), Spurgin (2001), and Lo (2002) for details.
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of overlaying one set of heuristics on top of an existing portfolio strategy has a certain
operational appeal that many institutional investors have found so compelling recently (e.g., so-
called “portable alpha” strategies). Overlay products can be considered a general class of
“superposition strategies,” which is explored in more detail in Kaminski (2006).

4. Analytical results

Having defined the basic framework in Section 3 for evaluating the performance of simple
stop-loss rules, we now apply them to several specific return-generating processes for frtg,
including the Random Walk Hypothesis in Section 4.1, mean-reversion and momentum
processes in Section 4.2, and a statistical regime-switching model in Section 4.3. The simplicity
of our stop-loss heuristic will allow us to derive explicit conditions under which stop-loss
policies can stop losses in each of these cases.

4.1. The Random Walk Hypothesis

Since the Random Walk Hypothesis is one of the most widely used return-generating
processes in the finance literature, any analysis of stop-loss policies must consider this leading
case first. Given the framework proposed in Section 3, we are able to derive a surprisingly strong
conclusion about the efficacy of stop-loss rules:

Proposition 1. If frtg satisfies the Random Walk Hypothesis so that:

rt ¼ μþ ϵt; ϵt ∼
IID

White Noiseð0;s2ϵÞ; ð12Þ
then the stop-loss policy has the following properties:

Δμ ¼ poðrf�μÞ ¼ �poπ; ð13aÞ

Δμ

po
¼�π; ð13bÞ

Δs2 ¼�pos
2 þ poð1�poÞπ2; ð13cÞ

ΔSR ¼� π

s
þ Δμ þ πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δs2 þ s2
p : ð13dÞ

Proof. See Appendix A.1.

Proposition 1 shows that, for any portfolio strategy with an expected return greater than the risk-
free rate rf, the Random Walk Hypothesis implies that the stop-loss policy will always reduce the
portfolio's expected return since Δμ ≤0. In the absence of any predictability in frtg, whether or not
the stop-loss is activated has no informational content for the portfolio's returns; hence, the only
effect of a stop-loss policy is to replace the portfolio strategy P with the risk-free asset when the
strategy is stopped out, thereby reducing the expected return by the risk premium of the original
portfolio strategy P. If the stop-loss probability po is large enough and the risk premium is small
enough, (13) shows that the stop-loss policy can also reduce the volatility of the portfolio.
The fact that there are no conditions under which the simple stop-loss policy can add value to a

portfolio with IID returns may explain why stop-loss rules have been given so little attention in
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the academic finance literature. The fact that the Random Walk Hypothesis was widely accepted
in the 1960s and 1970s, and considered to be synonymous with market efficiency and rationality,
eliminated the motivation for stop-loss rules altogether. In fact, our simple stop-loss policy may
be viewed as a more sophisticated version of the “filter rule” that was tested extensively by
Alexander (1961) and Fama and Blume (1966). Their conclusion that such strategies did not
produce any excess profits was typical of the outcomes of many similar studies during this
period.

However, despite the lack of interest in stop-loss rules in academic studies, investment
professionals have been using such rules for many years, and part of the reason for this
dichotomy may be the fact that the theoretical motivation for the Random Walk Hypothesis is
stronger than the empirical reality. In particular, Lo and MacKinlay (1988) presented compelling
evidence against the Random Walk Hypothesis for weekly U.S. stock-index returns from 1962 to
1985, which has subsequently been confirmed and extended to other markets and countries by a
number of other authors. In the next section, we shall see that, if asset-returns do not follow
random walks, there are several situations in which stop-loss policies can add significant value to
an existing portfolio strategy.

4.2. Mean reversion and momentum

In the 1980s and 1990s, several authors documented important departures from the Random
Walk Hypothesis for U.S. equity returns (e.g., Fama and French, 1988; Lo and MacKinlay, 1988,
1990, 1999; Poterba and Summers, 1988; Jegadeesh, 1990; Lo, 1991; Jegadeesh and Titman,
1993) and, in such cases, the implications for the stop-loss policy can be quite different than in
Proposition 1. To see how, consider the simplest case of a non-random-walk return-generating
process, the AR(1):

rt ¼ μþ ρðrt�1�μÞ þ ϵt; ϵt ∼IID White Noise ð0;s2ϵÞ; ρ∈ð�1; 1Þ ð14Þ
where the restriction that ρ lies in the open interval ð�1; 1Þ is to ensure that rt is a stationary
process (see Hamilton, 1994).

This simple process captures a surprisingly broad range of behavior depending on the single
parameter ρ, including the Random Walk Hypothesis ðρ¼ 0Þ, mean reversion ðρ∈ð�1; 0ÞÞ, and
momentum ðρ¼ ð0; 1ÞÞ. However, the implications of this return-generating process for our stop-
loss rule are not trivial to derive because the conditional distribution of rt, conditioned on
Rt�1ðJÞ, is quite complex. For example, according to Definition (4), the expression for the
stopping premium Δμ is given by:

Δμ ¼ poðrf�E½rtjst ¼ 0�Þ ð15Þ
but the conditional expectation E½rtjst ¼ 0� is not easy to evaluate in closed-form for an AR(1).
For ρ≠0, the conditional expectation is likely to differ from the unconditional mean μ since past
returns do contain information about the future, but the exact expression is not easily
computable. Fortunately, we are able to obtain a good first-order approximation under certain
conditions, yielding the following result:

Proposition 2. If frtg satisfies an AR(1) (14), then the stop-loss policy (2) has the following
properties:

Δμ

po
¼�π þ ρsþ ηðγ; δ; JÞ ð16Þ
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and for ρ40 and reasonable stop-loss parameters, it can be shown that ηðγ; δ; JÞ≥0, which
yields the following lower bound:

Δμ

po
≥�π þ ρs: ð17Þ

Proof. See Appendix A.2.

Proposition 2 shows that the impact of the stop-loss rule on expected returns is the sum of
three terms: the negative of the risk premium, a linear function of the autoregressive parameter ρ,
and a remainder term. For a mean-reverting portfolio strategy, ρo0; hence, the stop-loss policy
hurts expected returns to a first-order approximation. This is consistent with the intuition that
mean-reversion strategies benefit from reversals, thus a stop-loss policy that switches out of the
portfolio after certain cumulative losses will miss the reversal and lower the expected return of
the portfolio. On the other hand, for a momentum strategy, ρ40, in which case there is a
possibility that the second term dominates the first, yielding a positive stopping premium. This is
also consistent with the intuition that in the presence of momentum, losses are likely to persist,
therefore, switching to the risk-free asset after certain cumulative losses can be more profitable
than staying fully invested.
In fact, (17) implies that a sufficient condition for a stop-loss policy with reasonable

parameters to add value for a momentum-AR(1) return-generating process is:

ρ≥
π

s
≡SR; ð18Þ

where SR is the usual Sharpe ratio of the portfolio strategy. In other words, if the return-
generating process exhibits enough momentum, then the stop-loss rule will indeed stop losses.
This may seem like a rather high hurdle, especially for hedge-fund strategies that have Sharpe
ratios in excess of 1.00. However, note that (18) assumes that the Sharpe ratio is calibrated at the
same sampling frequency as ρ. Therefore, if we are using monthly returns in (14), the Sharpe
ratio in (18) must also be monthly. A portfolio strategy with an annual Sharpe ratio of 1.00,
annualized in the standard way by multiplying the monthly Sharpe ratio by

ffiffiffiffiffi
12

p
, implies a

monthly Sharpe ratio of 0.29, which is still a significant hurdle for ρ but not quite as imposing as
1.00.8

4.3. Regime-switching models

Statistical models of changes in regime, such as the Hamilton (1989) model, are parsimonious
ways to capture apparent nonstationarities in the data, such as sudden shifts in means and
variances. Although such models are, in fact, stationary, they do exhibit time-varying conditional
means and variances, conditioned on the particular state that prevails. Moreover, by assuming
that transitions from one state to another follow a time-homogenous Markov process, regime-
switching models exhibit rich time-series properties that are surprisingly difficult to replicate
with traditional linear processes. Regime-switching models are particularly relevant for stop-loss
policies because one of the most common reasons investors put forward for using a stop-loss rule
is to deal with a significant change in market conditions, such as October 1987 or August 1998.
8Of course, the assumption that returns follow an AR(1) makes the usual annualization factor of
ffiffiffiffiffi
12

p
incorrect, which

is why we use the phrase “annualized in the standard way.” See Lo (2002) for the proper method of annualizing Sharpe
ratios in the presence of serial correlation.
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To the extent that this motivation is genuine and appropriate, we should see significant
advantages to using stop-loss policies when the portfolio return frtg follows a regime-switching
process.

More formally, let rt be given by the following stochastic process:

rt ¼ Itr1t þ ð1�ItÞr2t; rit ∼IID N ðμi; s2i Þ; i¼ 1; 2 ð19aÞ

A≡

Itþ1 ¼ 1 Itþ1 ¼ 0

It ¼ 1

It ¼ 0

p11 p12
p21 p22

 !
ð19bÞ

where It is an indicator function that takes on the value 1 when state 1 prevails and 0 when state 2
prevails, and A is the Markov transition probabilities matrix that governs the transitions between
the two states. The parameters of (19) are the means and variances of the two states,
ðμ1; μ2; s21;s22Þ, and the transition probabilities ðp11; p22Þ. Without any loss in generality, we adopt
the convention that state 1 is the higher-mean state so that μ14μ2. Given assumption (A2), this
convention implies that μ14rf , which is an inequality we will use below. The six parameters of
(19) may be estimated numerically via maximum likelihood (Hamilton, 1994).

Despite the many studies in the economics and finance literatures that have implemented the
regime-switching model (19), the implications of regime-switching returns for the investment
process have only recently been considered (see Ang and Bekaert, 2004). This is due, in part, to
the analytical intractability of (19)—while the specification may seem simple, it poses significant
challenges for even the simplest portfolio optimization process. However, numerical results can
easily be obtained via Monte Carlo simulation.

In this section, we investigate the performance of our simple stop-loss policy for this return-
generating process. Because of the relatively simple time-series structure of returns within each
regime, we are able to characterize the stopping premium explicitly:

Proposition 3. If frtg satisfies the two-state Markov regime-switching process (19), then the
stop-loss policy (2) has the following properties:

Δμ ¼ po;1ðrf�μ1Þ þ po;2ðrf�μ2Þ ð20Þ

Δμ

po
¼ ð1� ~po;2Þðrf�μ1Þ þ ~po;2ðrf�μ2Þ ð21Þ

where:

po;1≡Probðst ¼ 0; It ¼ 1Þ; ð22aÞ

po;2≡Probðst ¼ 0; It ¼ 0Þ; ð22bÞ

~po;2≡
po;2
po

¼ ProbðIt ¼ 0 st ¼ 0Þ:
�� ð22cÞ

If the risk-free rate rf follows the same two-state Markov regime-switching process (19), with
expected returns rf1 and rf2 in states 1 and 2, respectively, then the stop-loss policy has the
following properties:

Δμ ¼ po;1ðrf 1�μ1Þ þ po;2ðrf 2�μ2Þ: ð23Þ
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Δμ

po
¼ ð1� ~po;2Þðrf 1�μ1Þ þ ~po;2ðrf 2�μ2Þ: ð24Þ

The conditional probability ~po;2 can be interpreted as the accuracy of the stop-loss policy in
anticipating the low-mean regime. The higher this probability is the more likely it is that the stop-
loss policy triggers during low-mean regimes (regime 2), which should add value to the expected
return of the portfolio as long as the risk-free asset-return rf is sufficiently high relative to the
low-mean expected return μ2.
In particular, we can use our expression for the stopping ratio Δμ=po to provide a bound on the

level of accuracy required to have a non-negative stopping premium. Consider first the case
where the risk-free asset rf is the same across both regimes. For levels of ~po;2 satisfying the
inequality:

~po;2≥
μ1�rf
μ1�μ2

ð25Þ

the corresponding stopping premium Δμ will be non-negative. By convention, μ14μ2, and by
assumption (A2), μ14rf , therefore the sign of the right side of (25) is positive. If rf is less than
μ2, then the right side of (25) is greater than 1, and no value of ~po;2 can satisfy (25). If the
expected return of equities in both regimes dominates the risk-free asset, then the simple stop-
loss policy will always decrease the portfolio's expected return, regardless of how accurate it is.
To see why, recall that returns are independently and identically distributed within each regime,
and we know from Section 4.1 that our stop-loss policy never adds value under the Random
Walk Hypothesis. Therefore, the only source of potential value-added for the stop-loss policy
under a regime-switching process is if the equity investment in the low-mean regime has a lower
expected return than the risk-free rate (i.e., μ2orf ). In this case, the right side of (25) is positive
and less than 1, implying that sufficiently accurate stop-loss policies will yield positive stopping
premia.
Note that the threshold for positive stopping premia in (25) is decreasing in the spread μ1�μ2.

As the difference between expected equity returns in the high-mean and low-mean states widens,
less accuracy is needed to ensure that the stop-loss policy adds value. This may be an important
psychological justification for the ubiquity of stop-loss rules in practice. If an investor possesses
a particularly pessimistic view of the low-mean state, implying a large spread between μ1 and μ2,
then our simple stop-loss policy may appeal to him even if its accuracy is not very high.

5. Empirical analysis

To illustrate the potential relevance of our framework for analyzing stop-loss rules, we
consider the performance of the simple stop-loss rule when applied to equity portfolios. Given
that most financial hedging is done in the futures markets, we apply stop-loss rules on equities
using daily futures prices from January 5, 1993 until November 7, 2011. Similar to how a futures
position would be held, the futures prices represent a weighted basket of prices over various
maturities shorter in the curve, which are rolled over to avoid jumps in prices near maturity. The
IMM S&P futures contract is used for a position in U.S. equities and the 10-year CBT Treasury
note futures contract is used for a bonds position. In this given sample period, the two portfolios
have a negative correlation of �17.29%. In Table 1, the basic statistical properties of the two
return series are detailed. In Table 2, the parameter estimates for a two-state regime-switching
model are also detailed.



Table 2
Annualized parameter estimates for a two-state Hamilton model estimated via the EM Algorithm on the IMM S&P futures
contract from January 5, 1993 to November 7, 2011.

Contract Name μ0 μ1 s0 s1 p

IMM S&P 22.3% �39.0% 10.3% 33.0% 0.72
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Fig. 1. Rolling serial autocorrelation coefficient estimates for the IMM S&P contract with a 75-day window.

Table 1
Summary statistics for U.S. Equities (IMM S&P) and long-term U.S. Government Bonds (CBT 10 YR) from January 5,
1993 to November 7, 2011. Statistics are annualized assuming 250 days per year.

Contract Name Ann. Ann. ρ Skew Kurt Min Max Ann. MDD
Mean (%) SD (%) (%) (%) Sharpe (%)

IMM S&P 7.295 19.499 �0.06 0.12 14.24 �9.88 14.12 0.37 26.62
CBT 10YR TN 1.181 6.331 0.02 �0.09 6.11 �2.43 3.61 0.19 5.25
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Despite the net positive serial autocorrelation in the IMM S&P contract, over smaller time
intervals the serial autocorrelation seems to be time varying. In Figs. 1 and 2, rolling point
estimates of serial autocorrelation are plotted using a 75-day and 150-day window, respectively.
These graphs suggest that there are periods when stocks can be either momentum driven or mean
reverting. Given the theoretical analysis in this paper, during periods of sufficient momentum
stop-loss policies might provide a stopping premium. In the same vein, during periods of mean
reversion stop-loss policies may produce negative stopping premiums. When a simple regime-
switching model is applied to the IMM S&P contract basket, the estimates also suggest that there
are two regimes: one positive low-volatility regime, and one negative higher volatility regime,
that occurs less often. Given the analytic results in Section 4, these parameter estimates indicate
stopping rules that can accurately determine low performance regimes in stocks, which may yield
a positive stopping premium.
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Fig. 2. Rolling serial autocorrelation coefficient estimates for the IMM S&P contract with a 150-day window.
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5.1. Basic results

To examine the performance of stop-loss rules, the approach can be applied from short-term to
longer-term where the strategy can be applied daily (1 day), weekly (5 days), monthly (20 days),
and quarterly (60 days). For each frequency, the stopping windows will be multiples of 3, 5, and
10 times the length of the data frequency (daily, weekly, monthly, and quarterly). The different
strategy combinations include daily (3,1), (5,1), (10,1); weekly (15,5), (25,5), (50,5); monthly
(60,20), (100,20), (200,20); and quarterly (180,60), (300,60), (600,60). Consistent with our
theoretical framework, (i,j) represent the size of the stopping window, and the re-entry window is
one period for each time frequency. The stopping thresholds, ðγÞ, will vary from �1.5 to �0.5
standard deviations from the mean at the relevant frequency. For example, if the stopping
window is three months long, the stops will be set relative to deviations from �1.5 to �0.5
standard deviations. To avoid data selection bias, we review a large range of stops to demonstrate
how the performance depends on threshold choices. The re-entry threshold, ðδÞ, will also be
modulated to the data frequency and will simply vary between �0.5 to 1 standard deviation from
the mean. This approach is used to allow for comparison across different frequencies of time. For
example, a one standard deviation weekly stop-loss versus a one standard deviation quarterly
stop-loss can be compared to see how the time frequency impacts the results.
Given the large set of parameters we analyze in this experiment, it is not surprising that the

performance of these strategies varies. There are a few key trends in the results. First, shorter
term, lower frequency stop-loss policies have negative stopping premiums over large ranges of
parameters. Longer term stop-loss at frequencies above one month perform better and can
achieve positive stopping premiums. In Fig. 3, the stopping premium for all frequencies and
combinations of threshold parameters is plotted as a function of the stopping threshold with
delta, the re-entry threshold, at a 0 standard deviation. In Figs. 4 and 5, the empirical results for
the change in Sharpe ratio and the change in standard deviation demonstrate how for longer term
stop-loss strategies the Sharpe ratio can improve as standard deviation decreases. Second, the
decision to exit and the stopping threshold seem to have a larger impact on the variation in results



Fig. 3. Stopping premium, ðΔμÞ, from short-term (3,1) stop-loss strategies to longer-term (1200,120) stop-loss strategies
with stopping thresholds, ðγÞ, of 1.5, 1.2, 1, 0.8, and 0.5 standard deviations from the mean with a 0 standard deviation re-
entry threshold, ðδÞ.
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than the re-entry threshold. Putting these results together, the empirical results suggest that the
use of longer term stop-loss strategies might have improved performance consistent with
anecdotal discussion of the strategy in practice.

6. Conclusion

In this paper, we provide a concrete answer to the question of when do stop-loss rules stop
losses? The answer depends, of course, on the return-generating process of the underlying
investment for which the stop-loss policy is implemented, as well as the particular dynamics of
the stop-loss policy itself. If “stopping losses” is interpreted as having a higher expected return
with the stop-loss policy than without it, then for a specific binary stop-loss policy, we derive
various conditions under which the expected-return difference, which we call the stopping
premium, is positive. We show that under the most common return-generating process, the
Random Walk Hypothesis, the stopping premium is always negative. The widespread cultural
affinity for the Random Walk Hypothesis, despite empirical evidence to the contrary, may
explain the general indifference to stop-loss policies in the academic finance literature.

However, under more empirically plausible return-generating processes such as momentum or
regime-switching models, we show that stop-loss policies can generate positive stopping premia.
When applied to a standard buy-and-hold strategy using daily U.S. futures contracts from
January 1993 to November 2011 where the stop-loss asset is U.S. long-term bonds futures, we
find that at longer sampling frequencies, certain stop-loss policies add value over a buy-and-hold



Fig. 4. Change in Sharpe Ratio, ðΔSRÞ, from short-term (3,1) stop-loss strategies to longer-term (1200,120) stop-loss
strategies with stopping thresholds, ðγÞ, of 1.5, 1.2, 1, 0.8, and 0.5 standard deviations from the mean with a 0 standard
deviation re-entry threshold, ðδÞ.
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portfolio while substantially reducing risk by reducing strategy volatility, consistent with their
objectives in practical applications. These empirical results suggest important nonlinearities in
aggregate stock and bond returns that have not been fully explored in the empirical finance
literature.
Our analytical and empirical results contain several points of intersection with the behavioral

finance literature. First, the flight-to-safety phenomena, which is best illustrated by events
surrounding the default of Russian government debt in August 1998, may create momentum in
equity returns and increase demand for long-term bonds, creating positive stopping premia as a
result. Second, systematic stop-loss policies may profit from the disposition effect and loss
aversion, the tendency to sell winners too soon and hold on to losers too long. Third, if investors
are ambiguity-averse, large negative returns may cause them to view equities as more ambiguous
which, in relative terms, will make long-term bonds seem less ambiguous. This may cause
investors to switch to bonds to avoid uncertainty about asset returns.
More generally, there is now substantial evidence from the cognitive sciences literature that

losses and gains are processed by different components of the brain. These different components
provide a partial explanation for some of the asymmetries observed in experimental and actual
markets. In particular, in the event of a significant drop in aggregate stock prices, investors who
are generally passive will become motivated to trade because mounting losses will cause them to
pay attention when they ordinarily would not. This influx of uninformed traders, who have less
market experience and are more likely to make irrational trading decisions, can have a significant



Fig. 5. Change in standard deviation, ðΔsÞ, from short-term (3,1) stop-loss strategies to longer-term (1200,120) stop-loss
strategies with stopping thresholds, ðγÞ, set at 1.5, 1.2, 1, 0.8, and 0.5 standard deviations from the mean with a 0 standard
deviation re-entry threshold, ðδÞ.
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impact on equilibrium prices and their dynamics. Therefore, even if markets are usually efficient,
on occasions where a significant number of investors experience losses simultaneously, markets
may be dominated temporarily by irrational forces. The mechanism for this coordinated
irrationality is cumulative loss.

Of course, our findings shed little light on the controversy between market efficiency and
behavioral finance. The success of our simple stop-loss policy may be due to certain non-linear
aspects of stock and bond returns from which our strategy happens to benefit (e.g., avoiding
momentum on the downside and exploiting asymmetries in asset returns following periods of
negative cumulative returns). From the behavioral perspective, our stop-loss policy is just one
mechanism for avoiding or anticipating the usual pitfalls of human judgment (e.g., the
disposition effect, loss aversion, ambiguity aversion, and flight-to-safety).

In summary, both behavioral finance and rational asset-pricing models may be used to
motivate the apparent effectiveness of stop-loss policies, in addition to the widespread use of
such policies in practice. This underscores the importance of learning how to deal with loss as an
investor, of which a stop-loss rule is only one dimension. As difficult as it may be to accept, for
the many investors who lamented, after the subprime mortgage meltdown of 2007–2008, that “if
only I had gotten out sooner, I wouldn't have lost so much,” they may have been correct.
Appendix A

In this appendix, we provide proofs of Propositions 1 and 2 in Sections A.1 and A.2.
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A.1. Proof of Proposition 1

The conclusion follows almost immediately from the observation that the conditional
expectations in (4) and (6) are equal to the unconditional expectations because of the Random
Walk Hypothesis (conditioning on past returns provides no incremental information), hence:

Δμ ¼�poπ≤0 ðA:1Þ
Δμ

po
¼�π≤0 ðA:2Þ

and the other relations follow in a similar manner.

A.2. Proof of Proposition 2

Let rt be a stationary AR(1) process:

rt ¼ μþ ρðrt�1�μÞ þ ϵt; ϵt ∼IID White Noise ð0;s2ϵÞ; ρ∈ð�1; 1Þ ðA:3Þ
We seek the conditional expectation of rt given that the process is stopped out. If we let J be
sufficiently large and δ¼�1, st ¼ 0 is equivalent to Rt�1ðJÞo�γ and st�1 ¼ 1 with
Rt�2ðJÞ≥�γ. Using log returns, we have:

E½rtjst ¼ 0� ¼ E½rtjRt�1ðJÞo�γ;Rt�2ðJÞ≥�γ� ðA:4Þ

E½rtjst ¼ 0� ¼ μð1�ρÞ þ ρE½rt�1 þ ϵtjRt�1ðJÞo�γ;Rt�2ðJÞ≥�γ� ðA:5Þ

E½rtjst ¼ 0� ¼ μð1�ρÞ þ ρE½rt�1jRt�1ðJÞo�γ;Rt�2ðJÞ≥�γ�: ðA:6Þ
By definition Rt�1ðJÞ≡rt�1 þ⋯þ rt�J and Rt�2ðJÞ ¼ rt�2 þ⋯þ rt�J�1. Setting y≡rt�2 þ⋯þ
rt�J then yields:

E½rtjst ¼ 0� ¼ μð1�ρÞ þ ρE½rt�1jRt�1ðJÞo�γ;Rt�2ðJÞ≥�γ� ðA:7Þ

E½rtjst ¼ 0� ¼ μð1�ρÞ þ ρEy½E½rt�1jrt�1o�γ�y; rt�J�1≥�γ�y��: ðA:8Þ
For J large enough, the dependence between rt�J�1 and rt�1 is of order oðρJÞ≈0, hence:

Ey½E½rt�1jrt�1o�γ�y��≤Ert�J�1 ½E½rt�1jrt�1ort�J�1�� ðA:9Þ

Ey½E½rt�1jrt�1o�γ�y��≤μ�s; ðA:10Þ
which implies:

E½rtjst ¼ 0�≤μð1�ρÞ þ ρðμ�sÞ: ðA:11Þ

E½rtjst ¼ 0�≤μ�ρs: ðA:12Þ
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